Effects of His-Tag Length on the Soluble Expression and Selective Immobilization of D-Amino Acid Oxidase from Trigonopsis variabilis: A Preliminary Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Construction of Fusion Genes
2.3. Cultivation Conditions of Recombinant DAOs
2.4. Crude Enzyme Preparation
2.5. Enzyme Immobilization
2.6. Protein Structure Homology Modeling
3. Results and Discussion
3.1. Effect of His-Tag Lengths on Protein Expression
3.1.1. Effect of His-Tag Lengths on Host Cell Growth
3.1.2. Effect of His-Tag Lengths on Protein Solubility
3.1.3. Effect of His-Tag Lengths on Enzyme Activity
3.2. Effect of His-Tag Lengths on Enzyme Immobilization
3.2.1. Effect of His-Tag Lengths on Immobilization Rate
3.2.2. Effect of His-Tag Lengths on Immobilization Selectivity
3.2.3. Effect of His-Tag Lengths on Immobilization Yield
3.2.4. Effect of His-Tag Lengths on Protein Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Porath, J.; Carlsson, J.; Belfrage, G.; Olsson, I. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598–599. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, P.T. Overview of the purification of recombinant proteins. Curr. Protoc. Protein Sci. 2015, 80, 6.1.1–6.1.35. [Google Scholar] [CrossRef] [PubMed]
- Loughran, S.T.; Bree, R.T.; Walls, D. Purification of Polyhistidine-Tagged Proteins. In Protein Chromatography Methods in Molecular Biology; Walls, D., Loughran, S., Eds.; Humana Press: New York, NY, USA, 2017; Volume 1485, pp. 275–303. [Google Scholar]
- Deng, S.; Zhu, S.; Zhang, X.; Sun, X.; Ma, X.; Su, E. High-level expression of nitrile hydratase in Escherichia coli for 2-amino-2, 3-dimethylbutyramide synthesis. Processes 2022, 10, 544. [Google Scholar] [CrossRef]
- Deng, S.; Su, E.; Ma, X.; Yang, S.; Wei, D. High-level soluble and functional expression of Trigonopsis variabilis D-amino acid oxidase in Escherichia coli. Bioprocess. Biosyst. Eng. 2014, 37, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Woestenenk, E.A.; Hammarström, M.; van den Berg, S.; Härd, T.; Berglund, H. His tag effect on solubility of human proteins produced in Escherichia coli: A comparison between four expression vectors. J. Struct. Funct. Genom. 2004, 5, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Gaberc-Porekar, V.; Menart, V. Potential for using histidine tags in purification of proteins at large scale. Chem. Eng. Technol. 2005, 28, 1306–1314. [Google Scholar] [CrossRef]
- Knecht, S.; Ricklin, D.; Eberle, A.N.; Ernst, B. Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces. J. Mol. Recognit. 2009, 22, 270–279. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Wiener, M.C. Membrane protein expression and production: Effects of polyhistidine tag length and position. Protein Expr. Purif. 2004, 33, 311–325. [Google Scholar] [CrossRef]
- Köppl, C.; Lingg, N.; Fischer, A.; Kröß, C.; Loibl, J.; Buchinger, W.; Schneider, R.; Jungbauer, A.; Striedner, G.; Cserjan-Puschmann, M. Fusion Tag Design Influences Soluble Recombinant Protein Production in Escherichia coli. Int. J. Mol. Sci. 2022, 23, 7678. [Google Scholar] [CrossRef]
- Sheldon, R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Deng, S.; Ma, X.; Sun, M.; Wei, D.; Su, E. Efficient enzymatic synthesis of ampicillin using mutant penicillin G acylase with bio-based solvent glycerol. Catal. Commun. 2016, 79, 31–34. [Google Scholar] [CrossRef]
- Deng, S.; Ma, X.; Su, E.; Wei, D. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis. J. Biotechnol. 2016, 219, 142–148. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- dos Santos, J.C.S.; Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Rodrigues, R.C.; Fernandez-Lafuente, R. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 2015, 7, 2413–2432. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, M.; Chen, G.; Zhao, J.; Guo, H. A potential method for one-step purification and direct immobilization of target protein in cell lysate with magnetic microbeads. Biochem. Eng. J. 2021, 176, 108182. [Google Scholar] [CrossRef]
- Freitas, A.I.; Domingues, L.; Aguiar, T.Q. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J. Adv. Res. 2021, 36, 249–264. [Google Scholar] [CrossRef]
- Magnusdottir, A.; Johansson, I.; Dahlgren, L.G.; Nordlund, P.; Berglund, H. Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat. Methods 2009, 6, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ma, X.; Deng, S.; Su, E.; Wei, D. One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochem. Eng. J. 2015, 95, 1–8. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015, 43, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Fong, W.P.; Tsang, P.W. A single Phe54Tyr substitution improves the catalytic activity and thermostability of Trigonopsis variabilis D-amino acid oxidase. New Biotechnol. 2010, 27, 78–84. [Google Scholar] [CrossRef]
- Xu, J.M.; Cao, H.T.; Wang, M.; Ma, B.J.; Wang, L.Y.; Zhang, K.; Cheng, F.; Xue, Y.P.; Zheng, Y.G. Development of a combination fermentation strategy to simultaneously increase biomass and enzyme activity of D-amino acid oxidase expressed in Escherichia coli. Appl. Biochem. Biotechnol. 2021, 193, 2029–2042. [Google Scholar] [CrossRef] [PubMed]
- Walls, D.; Loughran, S.T. Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol. Biol. 2011, 681, 151–175. [Google Scholar]
- Mateo, C.; Abian, O.; Bernedo, M.; Cuenca, E.; Fuentes, M.; Fernandez-Lorente, G.; Palomo, J.M.; Grazu, V.; Pessela, B.C.C.; Giacomini, C.; et al. Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb. Technol. 2005, 37, 456–462. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Zhu, Q.; Ma, L.; Li, G.; Su, E.; Zeng, J.; Chen, Y.; Meng, E.; Deng, S. Effects of His-Tag Length on the Soluble Expression and Selective Immobilization of D-Amino Acid Oxidase from Trigonopsis variabilis: A Preliminary Study. Processes 2023, 11, 1588. https://doi.org/10.3390/pr11061588
Yan Z, Zhu Q, Ma L, Li G, Su E, Zeng J, Chen Y, Meng E, Deng S. Effects of His-Tag Length on the Soluble Expression and Selective Immobilization of D-Amino Acid Oxidase from Trigonopsis variabilis: A Preliminary Study. Processes. 2023; 11(6):1588. https://doi.org/10.3390/pr11061588
Chicago/Turabian StyleYan, Zhipeng, Qinhe Zhu, Li Ma, Guihui Li, Erzheng Su, Jia Zeng, Yongzhong Chen, Er Meng, and Senwen Deng. 2023. "Effects of His-Tag Length on the Soluble Expression and Selective Immobilization of D-Amino Acid Oxidase from Trigonopsis variabilis: A Preliminary Study" Processes 11, no. 6: 1588. https://doi.org/10.3390/pr11061588
APA StyleYan, Z., Zhu, Q., Ma, L., Li, G., Su, E., Zeng, J., Chen, Y., Meng, E., & Deng, S. (2023). Effects of His-Tag Length on the Soluble Expression and Selective Immobilization of D-Amino Acid Oxidase from Trigonopsis variabilis: A Preliminary Study. Processes, 11(6), 1588. https://doi.org/10.3390/pr11061588