A Comprehensive Study on the Acidic Compounds in Gas and Particle Phases of Mainstream Cigarette Smoke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Derivatization Procedures
2.2.3. GC-MS Conditions
2.2.4. Multivariate Analysis
3. Results
3.1. Constituents of Acids in the Particulate and the Gaseous Phases
3.2. Acid Contents
3.3. Acid Content Difference between the Particulate and the Gaseous Phases
3.4. Acid Content Difference between the L- and the M-Types
3.5. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, S.Y.; Sim, S.; Choi, H.G. Active, passive, and electronic cigarette smoking is associated with asthma in adolescents. Sci. Rep. 2017, 7, 17789. [Google Scholar] [CrossRef] [PubMed]
- Loeb, L.A.; Emster, V.L.; Warner, K.E.; Abbotts, J.; Laszlo, J. Smoking and Lung Cancer: An Overview. Cancer Res. 1984, 44, 5940–5958. [Google Scholar] [PubMed]
- Hjermann, I.; Holme, I.; Byre, K.V.; Leren, P. Effect of diet and smoking intervention on the incidence of coronary heart disease: Report from the Oslo Study Group of a randomised trial in healthy men. Lancet 1981, 318, 1303–1310. [Google Scholar]
- Fagerström, K. The Epidemiology of Smoking Health Consequences and Benefits of Cessation. Drugs 2002, 62, 1–9. [Google Scholar]
- Marti-Aguado, D.; Clemente-Sanchez, A.; Bataller, R. Cigarette smoking and liver diseases. J. Hepatol. 2022, 77, 191–205. [Google Scholar] [CrossRef]
- Sopori, M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol. 2002, 2, 372–377. [Google Scholar] [CrossRef]
- Simonavicius, E.; McNeill, A.; Shahab, L.; Brose, L.S. Heat-not-burn tobacco products: A systematic literature review. Tob. Control 2019, 28, 582–594. [Google Scholar] [CrossRef]
- O’Connor, R.; Schneller, L.M.; Felicione, N.J.; Talhout, R.; Goniewicz, M.L.; Ashley, D.L. Evolution of tobacco products: Recent history and future directions. Tob. Control 2022, 31, 175–182. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke: Established List. Fed. Regist. 2012, 77, 20034–20037. Available online: https://www.fda.gov/tobacco-products/rules-regulations-and-guidance/harmful-and-potentially-harmful-constituents-tobacco-products-and-tobacco-smoke-established-list (accessed on 20 March 2023).
- Margham, J.; McAdam, K.; Forster, M.; Liu, C.; Wright, C.; Mariner, D.; Proctor, C. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem. Res. Toxicol. 2016, 29, 1662–1678. [Google Scholar] [CrossRef]
- Uchiyama, S.; Noguchi, M.; Takagi, N.; Hayashida, H.; Inaba, Y.; Ogura, H.; Kunugita, N. Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products. Chem. Res. Toxicol. 2018, 31, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.S.; Hatsukami, D.K. Smokeless tobacco and cigarette smoking: Chemical mechanisms and cancer prevention. Nat. Rev. Cancer 2022, 22, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Ji, H.; Jin, Z. Analysis of six aromatic amines in the mainstream smoke of tobacco products. Anal. Bioanal. Chem. 2022, 414, 4227–4234. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Qin, Y.; Pan, L.; Xie, F.; Liu, S.; Sun, X.; Wang, X.; Cai, J.; Zhao, X.; Liu, H. Accuracy improvement of determination of seven minor tobacco alkaloids in mainstream cigarette smoke using analyte protectants by gas chromatography-mass spectrometry. J. Chromatogr. A 2022, 1684, 463537. [Google Scholar] [CrossRef]
- Kaur, G.; Muthumalage, T.; Rahman, I. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products. Toxicol. Lett. 2018, 288, 143–155. [Google Scholar] [CrossRef]
- Crooks, I.; Neilson, L.; Scott, K.; Reynolds, L.; Oke, T.; Forster, M.; Meredith, C.; McAdam, K.; Proctor, C. Evaluation of flavourings potentially used in a heated tobacco product: Chemical analysis, in vitro mutagenicity, genotoxicity, cytotoxicity and in vitro tumour promoting activity. Food Chem. Toxicol. 2018, 118, 940–952. [Google Scholar] [CrossRef]
- Scherer, G.; Conze, C.; Meyerinck, L.v.; Sorsa, M.; Adlkofer, F. Importance of exposure to gaseous and particulate phase components of tobacco smoke in active and passive smokers. Int. Arch. Occup. Environ. Health 1990, 62, 459–466. [Google Scholar] [CrossRef]
- Sakuma, H.; Kusama, M.; Munakata, S.; Ohsumi, T.; Sugawara, S. The Distribution of Cigarette Smoke Components between Mainstream and Sidestream Smoke I. Acidic Components. Beiträge Zur Tab. Int. 1983, 12, 63–71. [Google Scholar] [CrossRef]
- Karlonas, N.; Padarauskas, A.; Ramanavicius, A.; Ramanaviciene, A. Mixed-mode SPE for a multi-residue analysis of benzodiazepines in whole blood using rapid GC with negative-ion chemical ionization MS. J. Sep. Sci. 2013, 36, 1437–1445. [Google Scholar] [CrossRef]
- ISO 3308:2012; Routine Analytical Cigarette-Smoking Machine—Definitions and Standard Conditions. ISO: New York, NY, USA, 2012.
- Christou, C.; Gika, H.G.; Raikos, N.; Theodoridis, G. GC-MS analysis of organic acids in human urine in clinical settings: A study of derivatization and other analytical parameters. J. Chromatogr. B 2014, 964, 195–201. [Google Scholar] [CrossRef]
- Bentley, M.C.; Almstetter, M.; Arndt, D.; Knorr, A.; Martin, E.; Pospisil, P.; Maeder, S. Comprehensive chemical characterization of the aerosol generated by a heated tobacco product by untargeted screening. Anal. Bioanal. Chem. 2020, 412, 2675–2685. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Burns, A.E.; Burke, G.J.P.; Poindexter, M.E.; Madl, A.K.; Pinkerton, K.E.; Nguyen, T.B. Application of High-Resolution Mass Spectrometry and a Theoretical Model to the Quantification of Multifunctional Carbonyls and Organic Acids in e-Cigarette Aerosol. Environ. Sci. Technol. 2020, 54, 5640–5650. [Google Scholar] [CrossRef] [PubMed]
- Winnall, W.R. 12.6 Additives and Flavourings in Tobacco Products. In Tobacco in Australia: Facts and Issues; Greenhalgh, E.M., Scollo, M.M., Winstanley, M.H., Eds.; Cancer Council Victoria: Melbourne, VIC, Australia, 2022; Available online: https://www.tobaccoinaustralia.org.au/chapter-12-tobacco-products/12-6-additives-and-flavourings-in-tobacco-products (accessed on 25 May 2023).
- Pankow, J.F.; Tavakoli, A.D.; Luo, W.; Isabelle, L.M. Percent free base nicotine in the tobacco smoke particulate matter of selected commercial and reference cigarettes. Chem. Res. Toxicol. 2003, 16, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Thielen, A.; Klus, H.; Muller, L. Tobacco smoke: Unraveling a controversial subject. Exp. Toxicol. Pathol. 2008, 60, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, L. Pomegranate fruit juice adulteration with apple juice: Detection by UV-visible spectroscopy combined with multivariate statistical analysis. Sci. Rep. 2022, 12, 5151. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, Y.; Zhang, M.; Qi, J.; Zhao, W.; Gu, J.; Guo, W.; Li, Y. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA. Food Chem. 2022, 387, 132932. [Google Scholar] [CrossRef]
- Peng, Q.; Meng, K.; Zheng, H.; Yu, H.; Zhang, Y.; Yang, X.; Lin, Z.; Xie, G. Metabolites comparison in post-fermentation stage of manual (mechanized) Chinese Huangjiu (yellow rice wine) based on GC-MS metabolomics. Food Chem. 2022, 14, 100324. [Google Scholar] [CrossRef]
Sample | Tobacco Type | TPM a (mg/cigarette) | Labelled Tar Content (mg/cigarette) | Measured Tar Content (mg/cigarette) | Water Content (mg/cigarette) | Nicotine Content (mg/cigarette) | CO (mg/cigarette) |
---|---|---|---|---|---|---|---|
L1 | Virginia | 13.38 | 10.0 | 10.81 | 1.66 | 0.90 | 9.93 |
L2 | Virginia | 9.50 | 8.0 | 8.13 | 0.69 | 0.68 | 10.02 |
L3 | Virginia | 13.78 | 11.0 | 11.43 | 1.41 | 0.95 | 10.94 |
L4 | Virginia | 13.39 | 11.0 | 10.80 | 1.66 | 0.93 | 10.13 |
L5 | Virginia | 14.80 | 11.0 | 12.12 | 1.68 | 1.00 | 11.61 |
M1 | Blend | 11.08 | 10.0 | 9.13 | 1.15 | 0.81 | 10.07 |
M2 | Blend | 10.57 | 10.0 | 8.86 | 1.00 | 0.71 | 10.02 |
M3 | Blend | 8.67 | 8.0 | 7.04 | 0.97 | 0.66 | 8.03 |
M4 | Blend | 9.99 | 8.0 | 8.34 | 0.91 | 0.74 | 9.27 |
Retention Time/min | CAS Number of the TMS Compound | Compound | Formula | Quantitative Ion | Qualitative Ion | k a | Chemical Group b |
---|---|---|---|---|---|---|---|
11.80 | 64-18-6 | Formic Acid | CH2O2 | 103 | 75 | 3.653 | 1 |
14.01 | 18147-36-9 | Acetic Acid | C2H4O2 | 117 | 75 | 3.078 | 1 |
17.05 | 13688-55-6 | Acrylic Acid | C3H4O2 | 129 | 75 | 0.03578 | 2 |
17.47 | 16844-98-7 | Propionic Acid | C3H6O2 | 131 | 75 | 2.541 | 1 |
21.17 | 16883-61-7 | 2-methylpropionic Acid | C4H8O2 | 145 | 117 | 1.998 | 3 |
22.88 | 55557-14-7 | 2-methylbutyric Acid | C5H10O2 | 159 | 117 | 0.03578 | 3 |
23.31 | 86254-80-0 | Crotonic Acid/2-butenoic Acid | C4H6O2 | 143 | 99 | 0.03578 | 2 |
23.39 | 55557-13-6 | Isovaleric Acid | C5H10O2 | 159 | 117 | 2.092 | 3 |
25.39 | 26429-16-3 | Valeric Acid | C5H10O2 | 159 | 177 | 1.952 | 2 |
26.78 | 55517-33-4 | 2-methyl-2-ene-butyric Acid | C5H8O2 | 157 | 83 | 1.501 | 8 |
27.68 | 88239-45-6 | 2-pentenoic Acid | C5H8O2 | 157 | 113 | 2.256 | 2 |
27.77 | 98983-20-1 | 3-methylpentanoic Acid | C6H12O2 | 173 | 117 | 1.744 | 3 |
28.09 | 35707 c | 4-methylpentanoic Acid | C6H12O2 | 173 | 131 | 1.729 | 3 |
28.68 | 1529-17-5 | Phenol | C6H6O | 166 | 151 | 1.737 | 4 |
28.80 | 17596-96-2 | Lactic Acid | C3H6O3 | 147 | 117 | 0.03578 | 5 |
29.49 | 14246-15-2 | Caproic Acid | C6H12O2 | 173 | 117 | 1.815 | 1 |
29.53 | 33581-77-0 | Glycolic Acid | C2H4O3 | 147 | 177 | 4.776 | 5 |
30.01 | 55887-51-9 | Pyruvic Acid | C3H4O3 | 147 | 217 | 3.671 | 5 |
31.63 | 55133-93-2 | 2-hydroxybutyric Acid | C4H8O3 | 131 | 147 | 2.522 | 5 |
31.91 | N/A | Levulinic Acid | C5H8O3 | 173 | 145 | 0.8642 | 5 |
32.00 | 1009-02-5 | o-cresol | C7H8O | 165 | 180 | 2.604 | 4 |
32.08 | 55887-53-1 | 2-furancarboxylic Acid | C5H4O3 | 125 | 169 | 2.612 | 6 |
32.41 | 55162-32-8 | 3-hydroxypropionic Acid | C3H6O3 | 147 | 219 | 0.03578 | 5 |
32.86 | 17902-32-8 | p-cresol | C7H8O | 165 | 180 | 4.457 | 4 |
32.95 | N/A | 3-hydroxy-butyric Acid | C4H8O3 | 147 | 191 | 3.552 | 5 |
34.94 | N/A | Furanacetic Acid | C6H6O3 | 198 | 154 | 0.03578 | 6 |
35.67 | N/A | 2-hydroxymethyl-butyric Acid | C5H10O3 | 147 | 247 | 0.03578 | 5 |
36.70 | 2078-12-8 | Benzoic Acid | C7H6O2 | 179 | 135 | 2.621 | 7 |
38.49 | N/A | Phenylacetic Acid | C8H8O2 | 164 | 193 | 0.03578 | 7 |
39.17 | 88964 c | 3-methyl-2-furancarboxylic Acid | C6H6O3 | 139 | 198 | 0.03578 | 6 |
39.23 | 5075-52-5 | Catechol | C6H6O2 | 254 | 239 | 1.763 | 4 |
39.56 | 38191-87-6 | Glyceric Acid | C3H6O4 | 189 | 292 | 0.3 | 8 |
42.31 | 2117-24-0 | Quinol/Resorcinol | C6H6O2 | 239 | 254 | 3.44 | 4 |
43.79 | 34084 c | 2-isopropyl-3-carbonyl-butyric Acid | C7H12O3 | 273 | 183 | 0.03578 | 8 |
45.12 | 65143-63-7 | Malic Acid | C4H6O5 | 147 | 233 | 0.9153 | 5 |
46.95 | 17864-23-2 | 1,2,3-glycinol | C6H6O3 | 239 | 342 | 3.895 | 4 |
47.41 | 38191-88-7 | Threonic Acid | C4H8O5 | 147 | 292 | 0.03578 | 5 |
47.83 | 3782-84-1 | m-hydroxy-benzoic Acid | C7H6O3 | 267 | 282 | 2.109 | 7 |
53.70 | N/A | Vanillic Acid | C8H8O4 | 297 | 312 | 0.9181 | 7 |
56.30 | 18603-17-3 | Tetradecanoic Acid/Myristic Acid | C14H28O2 | 285 | 285 | 0.4972 | 1 |
61.53 | 55520-89-3 | Palmitic Acid | C16H32O2 | 313 | 145 | 0.163 | 1 |
65.59 | 56259-07-5 | Linoleic Acid | C18H32O2 | 337 | 262 | 0.03578 | 2 |
65.74 | 97844-13-8 | Linolenic Acid | C18H30O2 | 335 | 108 | 0.03429 | 2 |
65.97 | 96851-47-7 | Oleic Acid | C18H34O2 | 339 | 117 | 0.06894 | 2 |
66.32 | 18748-91-9 | Octadecanoic Acid | C18H36O2 | 341 | 117 | 0.1029 | 1 |
70.72 | 55530-70-6 | Stearic Acid | C20H40O2 | 369 | 117 | 0.03 | 1 |
Chemical Group | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Particulate Phase | * | *** | *** | ** | ||||
Gaseous Phase | * | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Zhang, H.; Cao, Y.; Pang, Y.; Zhou, G.; Huang, H.; Li, J.; Jiang, J.; Yang, Q. A Comprehensive Study on the Acidic Compounds in Gas and Particle Phases of Mainstream Cigarette Smoke. Processes 2023, 11, 1694. https://doi.org/10.3390/pr11061694
Lu X, Zhang H, Cao Y, Pang Y, Zhou G, Huang H, Li J, Jiang J, Yang Q. A Comprehensive Study on the Acidic Compounds in Gas and Particle Phases of Mainstream Cigarette Smoke. Processes. 2023; 11(6):1694. https://doi.org/10.3390/pr11061694
Chicago/Turabian StyleLu, Xinbo, Hongfei Zhang, Yifeng Cao, Yongqiang Pang, Guojun Zhou, Hua Huang, Jing Li, Jian Jiang, and Qiwei Yang. 2023. "A Comprehensive Study on the Acidic Compounds in Gas and Particle Phases of Mainstream Cigarette Smoke" Processes 11, no. 6: 1694. https://doi.org/10.3390/pr11061694
APA StyleLu, X., Zhang, H., Cao, Y., Pang, Y., Zhou, G., Huang, H., Li, J., Jiang, J., & Yang, Q. (2023). A Comprehensive Study on the Acidic Compounds in Gas and Particle Phases of Mainstream Cigarette Smoke. Processes, 11(6), 1694. https://doi.org/10.3390/pr11061694