LC-ESI-QTOF-MS/MS Characterization of Phenolic Compounds in Common Commercial Mushrooms and Their Potential Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Sample Preparation and Extraction of Phenolic Compounds
2.3. Polyphenol Estimation
2.3.1. Determination of Total Phenolic Content (TPC)
2.3.2. Determination of Total Flavonoids Content (TFC)
2.3.3. Determination of Total Condensed Tannin Content (TCT)
2.4. Antioxidant Assays
2.4.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Antioxidant Assay
2.4.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4.3. 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Radical Scavenging Assay
2.4.4. Total Antioxidant Capacity (TAC) Assay
2.5. LC-ESI-QTOF-MS/MS Characterization of Phenolic Compounds
2.6. Statistical Analysis
3. Results
3.1. Phenolic Content Estimation (TPC, TFC, TCT)
3.2. Antioxidant Activity (DPPH, FRAP, ABTS and TAC)
3.3. Tentative Phenolic Characterization by LC-ESI-QTOF-MS/MS
3.3.1. Phenolic Acids
3.3.2. Flavonoids
Isoflavonoids
Flavanones and Flavonols
Flavanols and Dihydroflavonols
Anthocyanins
3.3.3. Lignans
3.3.4. Stilbenes and Other Polyphenols
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Expert Market Research. Global Mushroom Market Report and Forecast 2023–2028. 2023. Available online: https://www.expertmarketresearch.com/reports/mushroom-market (accessed on 27 May 2023).
- Rizzo, G.; Goggi, S.; Giampieri, F.; Baroni, L. A review of mushrooms in human nutrition and health. Trends Food Sci. Technol. 2021, 117, 60–73. [Google Scholar] [CrossRef]
- Ba, D.M.; Gao, X.; Al-Shaar, L.; Muscat, J.; Chinchilli, V.M.; Ssentongo, P.; Zhang, X.; Liu, G.; Beelman, R.B.; Richie, J.P. Prospective study of dietary mushroom intake and risk of mortality: Results from continuous National Health and Nutrition Examination Survey (NHANES) 2003–2014 and a meta-analysis. Nutr. J. 2021, 20, 80. [Google Scholar] [CrossRef]
- Kalaras, M.D.; Beelman, R.B.; Elias, R.J. Effects of Postharvest Pulsed UV Light Treatment of White Button Mushrooms (Agaricus bisporus) on Vitamin D2 Content and Quality Attributes. J. Agric. Food Chem. 2012, 60, 220–225. [Google Scholar] [CrossRef]
- Ramirez-Ambrosi, M.; Abad-Garcia, B.; Viloria-Bernal, M.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products. J. Chromatogr. A 2013, 1316, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Xiaokang, W.; Brunton, N.P.; Lyng, J.G.; Harrison, S.M.; Carpes, S.T.; Papoutsis, K. Volatile and non-volatile compounds of shiitake mushrooms treated with pulsed light after twenty-four hour storage at different conditions. Food Biosci. 2020, 36, 100619. [Google Scholar] [CrossRef]
- Barros, L.; Duenas, M.; Ferreira, I.C.F.R.; Baptista, P.; Santos-Buelga, C. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 2009, 47, 1076–1079. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Ziaullah; Rupasinghe, H.P.V. Chapter 1—Application of NMR Spectroscopy in Plant Polyphenols Associated with Human Health. In Applications of NMR Spectroscopy; ur-Rahman, A., Choudhary, M.I., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; pp. 3–92. [Google Scholar]
- Decker, E.A. Phenolics: Prooxidants or Antioxidants? Nutr. Rev. 1997, 55, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, P.; Chutia, P.; Singh, P.; Mahanta, C.L. Effect of optimized ultrasound-assisted aqueous and ethanolic extraction of Pleurotus citrinopileatus mushroom on total phenol, flavonoids and antioxidant properties. J. Food Process Eng. 2019, 42, e13172. [Google Scholar] [CrossRef]
- Hamill, L.L.; McRoberts, W.C.; Floyd, S.D.; McKinley, M.C.; Young, I.S.; Woodside, J.V. Analyses of a polyphenol aglycone profile in broccoli and carrots by LC-MS QToF. Proc. Nutr. Soc. 2012, 71, E93. [Google Scholar] [CrossRef] [Green Version]
- Fang, N.; Yu, S.; Prior, R.L. LC/MS/MS Characterization of Phenolic Constituents in Dried Plums. J. Agric. Food Chem. 2002, 50, 3579–3585. [Google Scholar] [CrossRef] [PubMed]
- Rahimi Khoigani, S.; Rajaei, A.; Goli, S.A.H. Evaluation of antioxidant activity, total phenolics, total flavonoids and LC–MS/MS characterisation of phenolic constituents in Stachys lavandulifolia. Nat. Prod. Res. 2017, 31, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Buruleanu, L.C.; Radulescu, C.; Georgescu, A.A.; Danet, F.A.; Olteanu, R.L.; Nicolescu, C.M.; Dulama, I.D. Statistical Characterization of the Phytochemical Characteristics of Edible Mushroom Extracts. Anal. Lett. 2018, 51, 1039–1059. [Google Scholar] [CrossRef]
- Stojanova, M.; Pantić, M.; Karadelev, M.; Čuleva, B.; Nikšić, M. Antioxidant potential of extracts of three mushroom species collected from the Republic of North Macedonia. J. Food Process. Preserv. 2021, 45, e15155. [Google Scholar] [CrossRef]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through LC-ESI-QTOF-MS2 and Their Antioxidant Potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef]
- Ma, C.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds in Palm Fruits (Jelly and Fishtail Palm) and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Wan Mahmood, W.M.A.; Lorwirachsutee, A.; Theodoropoulos, C.; Gonzalez-Miquel, M. Polyol-Based Deep Eutectic Solvents for Extraction of Natural Polyphenolic Antioxidants from Chlorella vulgaris. ACS Sustain. Chem. Eng. 2019, 7, 5018–5026. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef]
- Queiroz, M.; Oppolzer, D.; Gouvinhas, I.; Silva, A.M.; Barros, A.I.R.N.A.; Domínguez-Perles, R. New grape stems’ isolated phenolic compounds modulate reactive oxygen species, glutathione, and lipid peroxidation in vitro: Combined formulations with vitamins C and E. Fitoterapia 2017, 120, 146–157. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1209. [Google Scholar] [CrossRef]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Ferreira, M.-J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- Selli, S.; Guclu, G.; Sevindik, O.; Kelebek, H. Variations in the key aroma and phenolic compounds of champignon (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms after two cooking treatments as elucidated by GC–MS-O and LC-DAD-ESI-MS/MS. Food Chem. 2021, 354, 129576. [Google Scholar] [CrossRef]
- Bernaś, E. Comparison of the mechanism of enzymatic browning in frozen white and brown A. bisporus. Eur. Food Res. Technol. 2018, 244, 1239–1248. [Google Scholar] [CrossRef]
- Boonsong, S.; Klaypradit, W.; Wilaipun, P. Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric. Nat. Resour. 2016, 50, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Xiaokang, W.; Lyng, J.G.; Brunton, N.P.; Cody, L.; Jacquier, J.-C.; Harrison, S.M.; Papoutsis, K. Monitoring the effect of different microwave extraction parameters on the recovery of polyphenols from shiitake mushrooms: Comparison with hot-water and organic-solvent extractions. Biotechnol. Rep. 2020, 27, e00504. [Google Scholar] [CrossRef]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 2019, 84, 15–18. [Google Scholar] [CrossRef]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Crit. Rev. Food Sci. Nutr. 2021, 62, 6204–6224. [Google Scholar] [CrossRef]
- Sifat, N.; Lovely, F.; Zihad, S.M.N.K.; Hossain, M.G.; Shilpi, J.A.; Grice, I.D.; Mubarak, M.S.; Uddin, S.J. Investigation of the nutritional value and antioxidant activities of common Bangladeshi edible mushrooms. Clin. Phytosci. 2020, 6, 88. [Google Scholar] [CrossRef]
- Sarwar, S.; Siddique, Z.E.B.; Bashir, A.; Khalid, A.N. Rubroboletus himalayensis sarwar & khalid—A new mushroom from Pakistan. Bangladesh J. Plant Taxon. 2021, 28, 17–26. [Google Scholar] [CrossRef]
- Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio compounds of edible mushrooms: In vitro antioxidant and antimicrobial activities. LWT—Food Sci. Technol. 2019, 107, 214–220. [Google Scholar] [CrossRef]
- Sharpe, E.; Farragher-Gnadt, A.P.; Igbanugo, M.; Huber, T.; Michelotti, J.C.; Milenkowic, A.; Ludlam, S.; Walker, M.; Hanes, D.; Bradley, R.; et al. Comparison of antioxidant activity and extraction techniques for commercially and laboratory prepared extracts from six mushroom species. J. Agric. Food Res. 2021, 4, 100130. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Xu, B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT—Food Sci. Technol. 2016, 72, 423–431. [Google Scholar] [CrossRef]
- Smolskaitė, L.; Venskutonis, P.R.; Talou, T. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT—Food Sci. Technol. 2015, 60, 462–471. [Google Scholar] [CrossRef] [Green Version]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef]
- Ming-Tsung, Y.; Yu-Hsiu, T.; Ruei-Chian, L.; Jeng-Leun, M. Antioxidant properties of fungal chitosan from shiitake stipes. LWT—Food Sci. Technol. 2007, 40, 255–261. [Google Scholar] [CrossRef]
- Cayan, F.; Deveci, E.; Tel-Cayan, G.; Duru, M.E. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC-DAD. J. Food Meas. Charact. 2020, 14, 1690–1698. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, P.; Jin, G.; Wei, S.; Chen, J.; Pei, J.; Zhang, Y. Substrate promiscuity of acyltransferases contributes to the diversity of hydroxycinnamic acid derivatives in purple coneflower. Plant J. 2022, 110, 802–813. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Huang, C.-S.; Liu, H.-X.; He, Y.-Q. Distribution, Synthesis and Biological Activity of Dalbergin. Nat. Prod. Res. Dev. 2009, 21, 900–904. [Google Scholar]
- Kadam, D.; Palamthodi, S.; Lele, S.S. LC–ESI-Q-TOF–MS/MS profiling and antioxidant activity of phenolics from L. sativum seedcake. J. Food Sci. Technol. 2018, 55, 1154–1163. [Google Scholar] [CrossRef]
- Wiseman, H.; Casey, K.; Clarke, D.B.; Barnes, K.A.; Bowey, E. Isoflavone Aglycon and Glucoconjugate Content of High- and Low-Soy U.K. Foods Used in Nutritional Studies. J. Agric. Food Chem. 2002, 50, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res. Pharm. Sci. 2014, 9, 463–469. [Google Scholar]
- Miyake, Y.; Yamamoto, K.; Osawa, T. Isolation of Eriocitrin (Eriodictyol 7-rutinoside) from Lemon Fruit (Citrus limon BURM. f.) and Its Antioxidative Activity. Food Sci. Technol. Int. Tokyo 1997, 3, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Suprun, A.R.; Dubrovina, A.S.; Tyunin, A.P.; Kiselev, K.V. Profile of Stilbenes and Other Phenolics in Fanagoria White and Red Russian Wines. Metabolites 2021, 11, 231. [Google Scholar] [CrossRef]
- Qian, J.; Lai, W.; Jiang, L.; Zhan, H.; Zhai, M.; Fu, J.; Zhang, C. Association between differential gene expression and anthocyanin biosynthesis underlying the diverse array of petal colors in Zinnia elegans. Sci. Hortic. 2021, 277, 109809. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Kim, Y.H.; Bae, D.S.; Um, B.H.; Pan, C.-H.; Kim, C.Y.; Lee, H.J.; Lee, J.K. Anti-Inflammatory Effects of Gomisin N, Gomisin J, and Schisandrin C Isolated from the Fruit of Schisandra chinensis. Biosci. Biotechnol. Biochem. 2010, 74, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.Y.; Hung, T.M.; Bae, K.H.; Shin, E.M.; Zhou, H.Y.; Hong, Y.N.; Kang, S.S.; Kim, H.P.; Kim, Y.S. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur. J. Pharmacol. 2008, 591, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Piispanen, R.; Willför, S.; Saranpää, P.; Holmbom, B. Variation of lignans in Norway spruce (Picea abies [L.] Karst.) knotwood: Within-stem variation and the effect of fertilisation at two experimental sites in Finland. Trees 2008, 22, 317–328. [Google Scholar] [CrossRef]
- Kang, L.-Z.; Zeng, X.-L.; Ye, Z.-W.; Lin, J.-F.; Guo, L.-Q. Compositional analysis of the fruiting body of transgenic Flammulina velutipes producing resveratrol. Food Chem. 2014, 164, 211–218. [Google Scholar] [CrossRef]
- Beekwilder, J.; Wolswinkel, R.; Jonker, H.; Hall, R.; de Vos, C.H.R.; Bovy, A. Production of resveratrol in recombinant microorganisms. Appl. Environ. Microbiol. 2006, 72, 5670–5672. [Google Scholar] [CrossRef] [Green Version]
- Bannour, M.; Fellah, B.; Rocchetti, G.; Ashi-Smiti, S.; Lachenmeier, D.W.; Lucini, L.; Khadhri, A. Phenolic profiling and antioxidant capacity of Calligonum azel Maire, a Tunisian desert plant. Food Res. Int. 2017, 101, 148–154. [Google Scholar] [CrossRef]
- Akazawa, T.; Itami, H.; Furumoto, T.; Nozaki, C.; Koike, H.; Iritani, S.; Amimoto, N.; Ogawa, M. Impact of an Olive Leaf Polyphenol 3,4-DHPEA-EDA on Physical Properties of Food Protein Gels. J. Agric. Food Chem. 2021, 69, 14250–14258. [Google Scholar] [CrossRef]
- Birtić, S.; Dussort, P.; Pierre, F.-X.; Bily, A.C.; Roller, M. Carnosic acid. Phytochemistry 2015, 115, 9–19. [Google Scholar] [CrossRef] [Green Version]
No. | Proposed Compound | Molecular Formula | RT (min) | Ionization Mode | Molecular Weight | Theoretical (m/z) | Observed (m/z) | Mass Error | Sample |
---|---|---|---|---|---|---|---|---|---|
Phenolic acids | |||||||||
Hydroxyphenylpropanoic acids | |||||||||
1 | Dihydrocaffeic acid 3-O-glucuronide | C15H18O10 | 4.16 | ** [M-H]− | 358.0910 | 357.0837 | 357.0837 | 0 | * WBM, SM, WFM |
Hydroxycinnamic acids | |||||||||
2 *** | p-Coumaroyl malic acid | C13H12O7 | 3.65 | [M-H]− | 280.0586 | 279.0513 | 279.0511 | −0.7 | * WFM, OWM, PFM, SM |
3 | Cinnamic acid | C9H8O2 | 4.53 | [M-H]− | 148.0538 | 147.0465 | 147.0463 | −1.4 | * SM, NM, WFM, BPM, PFM, OWM, OM |
Flavonoids | |||||||||
Isoflavonoids | |||||||||
4 | Dalbergin | C16H12O4 | 3.88 | [M-H]− | 268.0734 | 267.0661 | 267.0666 | 1.9 | * SM, PFM, NM |
5 | 2′,7-Dihydroxy-4′,5′-dimethoxyisoflavone | C17H14O6 | 3.83 | ** [M+H]+ | 314.0787 | 315.0860 | 315.0860 | 0 | * BPM, NM, WBM |
6 | 6″-O-Acetyldaidzin | C23H22O10 | 3.96 | [M-H]− | 458.1202 | 457.1129 | 457.1151 | 4.8 | SM |
Flavonols | |||||||||
7 | Kaempferol 7-O-glucoside | C21H19O11 | 3.35 | [M-H]− | 447.0910 | 446.0837 | 446.0858 | 4.7 | WBM |
Flavanones | |||||||||
8 | Eriocitrin | C27H32O15 | 54.24 | [M-H]− | 596.1713 | 595.1640 | 595.1638 | −0.3 | * WFM, OM |
Flavanols | |||||||||
9 | (+)-Catechin 3-O-gallate | C22H18O10 | 3.72 | [M-H]− | 442.0857 | 441.0784 | 441.0783 | −0.2 | * WBM, OWM, PFM |
10 | 4′-O-Methyl-(-)-epigallocatechin 7-O-glucuronide | C22H24O13 | 54.71 | [M-H]− | 496.1233 | 495.1160 | 495.1164 | 0.8 | * WCM, WFM |
Dihydroflavonols | |||||||||
11 | Dihydroquercetin 3-O-rhamnoside | C21H22O11 | 3.61 | [M-H]− | 450.1144 | 449.1071 | 449.1069 | −0.4 | * SM, WFM |
12 | 3-Hydroxyphloretin 2′-O-xylosyl-glucoside | C26H32O15 | 59.78 | [M-H]− | 584.1766 | 583.1693 | 583.1692 | −0.2 | BPM |
Anthocyanins | |||||||||
13 | Cyanidin 3-O-(6″-acetyl-glucoside) | C23H23O12 | 3.06 | [M-H]− | 491.1176 | 490.1103 | 490.1102 | −0.2 | * SBM, NM, SM, PFM, WCM, WBM, WFM, OWM, OM |
14 *** | Petunidin 3-O-(6″-acetyl-glucoside) | C24H25O13 | 3.80 | [M+H]+ | 521.1297 | 522.1370 | 522.1396 | 5.0 | PFM |
Lignans | |||||||||
15 | Todolactol A | C20H24O7 | 4.43 | [M-H]− | 376.1519 | 375.1446 | 375.1435 | −2.9 | NM |
16 | Schisandrin C | C22H24O6 | 41.09 | ** [M+H]+ | 384.1540 | 385.1613 | 385.1607 | −1.6 | * OM |
17 | Deoxyschisandrin | C24H32O6 | 3.11 | ** [M-H]− | 416.2196 | 415.2123 | 415.2133 | 2.4 | * BPM, SM, WCM |
18 | Schisandrin | C24H32O7 | 4.84 | ** [M+H]+ | 432.2154 | 433.2227 | 433.2222 | −1.2 | * SM, NM |
Stilbenes | |||||||||
19 | Trans-Resveratrol | C14H12O3 | 4.58 | [M-H]− | 228.0780 | 227.0707 | 227.0706 | −0.4 | * WCM, WBM, OWM, NM, WFM |
20 | Resveratrol 5-O-glucoside | C20H22O8 | 3.81 | [M-H]− | 390.1311 | 389.1238 | 389.1240 | 0.5 | NM |
Other polyphenols | |||||||||
Tyrosols | |||||||||
21 | 3,4-DHPEA-EDA | C17H20O6 | 4.87 | [M-H]− | 320.1276 | 319.1203 | 319.1195 | −2.5 | * PFM, WFM |
Phenolic terpenes | |||||||||
22 | Carnosic acid | C20H28O4 | 57.83 | ** [M-H]− | 332.1997 | 331.1924 | 331.1923 | −0.3 | * SM, NM, WCM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, M.; Khan, R.D.; Zhou, Y.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS Characterization of Phenolic Compounds in Common Commercial Mushrooms and Their Potential Antioxidant Activities. Processes 2023, 11, 1711. https://doi.org/10.3390/pr11061711
Chu M, Khan RD, Zhou Y, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. LC-ESI-QTOF-MS/MS Characterization of Phenolic Compounds in Common Commercial Mushrooms and Their Potential Antioxidant Activities. Processes. 2023; 11(6):1711. https://doi.org/10.3390/pr11061711
Chicago/Turabian StyleChu, Minghang, Rana Dildar Khan, Ying Zhou, Osman Tuncay Agar, Colin J. Barrow, Frank R. Dunshea, and Hafiz A. R. Suleria. 2023. "LC-ESI-QTOF-MS/MS Characterization of Phenolic Compounds in Common Commercial Mushrooms and Their Potential Antioxidant Activities" Processes 11, no. 6: 1711. https://doi.org/10.3390/pr11061711
APA StyleChu, M., Khan, R. D., Zhou, Y., Agar, O. T., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2023). LC-ESI-QTOF-MS/MS Characterization of Phenolic Compounds in Common Commercial Mushrooms and Their Potential Antioxidant Activities. Processes, 11(6), 1711. https://doi.org/10.3390/pr11061711