Preliminary Study on the Feasibility of Radiation Technique for Mural Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Mural Blocks and Pigments
2.3. Electron-Beam Irradiation
2.4. Characterization
3. Results and Discussion
3.1. Irradiation Decontamination
3.2. Effect on the Color of the Mock Mural Blocks
3.3. Raman Spectra of Pigments
3.4. Effect on Surface Cohesion of Pigment Layer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gadd, G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Garg, K.L.; Jain, K.K.; Mishra, A.K. Role of fungi in the deterioration of wall paintings. Sci. Total Environ. 1995, 167, 255–271. [Google Scholar] [CrossRef]
- Scheerer, S.; Ortega-Morales, O.; Gaylarde, C. Chapter 5 Microbial Deterioration of Stone Monuments—An Updated Overview. In Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2009; Volume 66, pp. 97–139. [Google Scholar] [CrossRef]
- Borderie, F.; Laurence, A.-S.; Naoufal, R.; Faisl, B.; Geneviève, O.; Dominique, R.; Badr, A.-S. UV–C irradiation as a tool to eradicate algae in caves. Int. Biodeterior. Biodegrad. 2011, 65, 579–584. [Google Scholar] [CrossRef]
- Gambino, M.; Ahmed, M.A.-A.A.; Villa, F.; Cappitelli, F. Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb. Int. Biodeterior. Biodegrad. 2017, 122, 92–99. [Google Scholar] [CrossRef]
- Li, T.; Hu, Y.; Zhang, B. Evaluation of efficiency of six biocides against microorganisms commonly found on Feilaifeng Limestone, China. J. Cult. Herit. 2020, 43, 45–50. [Google Scholar] [CrossRef]
- Bastian, F.; Alabouvette, C.; Jurado, V.; Saiz-Jimenez, C. Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Naturwissenschaften 2009, 96, 863–868. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Wu, F.; Gu, J.-D.; Feng, H.; Shah, K.; Wang, W. Controlling biodeterioration of cultural heritage objects with biocides: A review. Int. Biodeterior. Biodegrad. 2019, 143, 104721. [Google Scholar] [CrossRef]
- Faimon, J.; Štelcl, J.; Kubešová, S.; Zimák, J. Environmentally acceptable effect of hydrogen peroxide on cave “lamp-flora”, calcite speleothems and limestones. Environ. Pollut. 2003, 122, 417–422. [Google Scholar] [CrossRef]
- Varnai, V.M.; Macan, J.; Ljubičić Ćalušić, A.; Prester, L.; Kanceljak Macan, B. Upper respiratory impairment in restorers of cultural heritage. Occup. Med. 2011, 61, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Chelius, M.K.; Beresford, G.; Horton, H.; Quirk, M.; Selby, G.; Simpson, R.T.; Horrocks, R.; Moore, J.C. Impacts of alterations of organic inputs on the bacterial community within the sediments of Wind Cave, South Dakota, USA. Int. J. Speleol. 2009, 38, 1. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Nováková, A.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. Use of Biocides for the Control of Fungal Outbreaks in Subterranean Environments: The Case of the Lascaux Cave in France. Environ. Sci. Technol. 2012, 46, 3762–3770. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential Oils as Natural Biocides in Conservation of Cultural Heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [Green Version]
- Veneranda, M.; Blanco-Zubiaguirre, L.; Roselli, G.; Di Girolami, G.; Castro, K.; Madariaga, J.M. Evaluating the exploitability of several essential oils constituents as a novel biological treatment against cultural heritage biocolonization. Microchem. J. 2018, 138, 1–6. [Google Scholar] [CrossRef]
- Marco, A.; Santos, S.; Caetano, J.; Pintado, M.; Vieira, E.; Moreira, P.R. Basil essential oil as an alternative to commercial biocides against fungi associated with black stains in mural painting. Build. Environ. 2020, 167, 106459. [Google Scholar] [CrossRef]
- Fidanza, M.R.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Franco-Castillo, I.; Hierro, L.; de la Fuente, J.M.; Seral-Ascaso, A.; Mitchell, S.G. Perspectives for antimicrobial nanomaterials in cultural heritage conservation. Chem 2021, 7, 629–669. [Google Scholar] [CrossRef]
- Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for Mold and Mycotoxin Control: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Moeller, R.; Tran, S.; Dubovcova, B.; Akepsimaidis, G.; Meneses, N.; Drissner, D.; Mathys, A. Geobacillus and Bacillus Spore Inactivation by Low Energy Electron Beam Technology: Resistance and Influencing Factors. Front. Microbiol. 2018, 9, 2720. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02720 (accessed on 20 April 2023). [CrossRef] [Green Version]
- Głuszewski, W.; Zagórski, Z.P.; Tran, Q.K.; Cortella, L. Maria Skłodowska Curie—The precursor of radiation sterilization methods. Anal. Bioanal. Chem. 2011, 400, 1577–1582. [Google Scholar] [CrossRef]
- Xu, D.; Shi, R.; Ma, L.; Ruan, Y.; Luo, M.; Dai, M.; Shao, Y.; Zhuo, L.; Yang, X. Intelligently Controlled Mobile Electron Beam Irradiation Device. Chinese Patent ZL 202022634267.X, 11 February 2022. [Google Scholar]
- Negut, D.C.; Ponta, C.C.; Rodica, M.G.; Moise, I.V.; Gh, N.; Lupu, A.I.M. Effects of gamma irradiation on the colour of pigments. In Proceedings of the SPIE 6618, O3A: Optics for Arts, Architecture, and Archaeology, Munich, Germany, 19 July 2007; p. 66180R. [Google Scholar] [CrossRef]
- Fu, J.; Shen, W.; Bao, J.; Chen, Q. The decontamination effects of gamma irradiation on the edible gelatin. Radiat. Phys. Chem. 2000, 57, 345–348. [Google Scholar] [CrossRef]
- Vieira, F.F.; Del Mastro, N.L. Comparison of γ-radiation and electron beam irradiation effects on gelatin. Radiat. Phys. Chem. 2002, 63, 331–332. [Google Scholar] [CrossRef]
- Ma, W.; Wu, F.; He, D.; Li, J.; Zhang, Q.; Yang, X.; Gu, J.-D.; Wang, W.; Feng, H. The biodeterioration outbreak in Dunhuang Mogao Grottoes analyzed for the microbial communities and the occurrence time by C-14 dating. Int. Biodeterior. Biodegrad. 2023, 178, 105533. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Du, Y.; Tian, T.; Xiang, T.; Liu, X.; Wu, F.; An, L.; Wang, W.; Gu, J.-D.; et al. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci. Rep. 2015, 5, 7752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Gorbushina, A.A.; Heyrman, J.; Dornieden, T.; Gonzalez-Delvalle, M.; Krumbein, W.E.; Laiz, L.; Petersen, K.; Saiz-Jimenez, C.; Swings, J. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene–Kreiensen, Germany). Int. Biodeterior. Biodegrad. 2004, 53, 13–24. [Google Scholar] [CrossRef]
- He, D.; Wu, F.; Ma, W.; Zhang, Y.; Gu, J.-D.; Duan, Y.; Xu, R.; Feng, H.; Wang, W.; Li, S.-W. Insights into the bacterial and fungal communities and microbiome that causes a microbe outbreak on ancient wall paintings in the Maijishan Grottoes. Int. Biodeterior. Biodegrad. 2021, 163, 105250. [Google Scholar] [CrossRef]
- Xing, W.; Qi, B.; Chen, R.; Ding, W.; Zhang, F. Metagenomic analysis reveals taxonomic and functional diversity of microbial communities on the deteriorated wall paintings of Qinling Tomb in the Southern Tang Dynasty, China. BMC Microbiol. 2023, 23, 140. [Google Scholar] [CrossRef]
- Han, P.; Zhang, H.; Zhang, R.; Tan, X.; Zhao, L.; Liang, Y.; Su, B. Evaluation of the effectiveness and compatibility of nanolime for the consolidation of earthen-based murals at Mogao Grottoes. J. Cult. Herit. 2022, 58, 266–273. [Google Scholar] [CrossRef]
- Coppola, F.; Fiorillo, F.; Modelli, A.; Montanari, M.; Vandini, M. Effects of γ-ray treatment on paper. Polym. Degrad. Stab. 2018, 150, 25–30. [Google Scholar] [CrossRef]
- Macera, L.; Daniele, V.; Duchetta, F.; Casciardi, S.; Taglieri, G. New nanolimes for eco-friendly and customized treatments to preserve the biocalcarenites of the “Valley of Temples” of Agrigento. Constr. Build. Mater. 2021, 306, 124811. [Google Scholar] [CrossRef]
- Drdácký, M.; Lesák, J.; Rescic, S.; Slížková, Z.; Tiano, P.; Valach, J. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater. Struct. 2012, 45, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Feng, J.; Wang, F.; Hu, Y. Irradiation sterilization used for allogenetic tendon: A literature review of current concept. Cell Tissue Bank. 2019, 20, 129–139. [Google Scholar] [CrossRef]
- Saleh, Y.G.; Mayo, M.S.; Ahearn, D.G. Resistance of some common fungi to gamma irradiation. Appl. Environ. Microbiol. 1988, 54, 2134–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria, G.C.T.; Wiendl, F.M. The Applicability of Gamma Radiation to the Control of Fungi in Naturally Contaminated Paper. Restaurator 1995, 16, 93–99. [Google Scholar] [CrossRef]
- Sakr, A.; Ghaly, M.; Ali, M. The Use of Gamma Irradiation in the Sterilization of Streptomyces Colonizing the Tempra Paintings in Ancient Egyptian Tombs. Int. J. Conserv. Sci. 2013, 4, 283–294. [Google Scholar]
- Dadachova, E.; Casadevall, A. Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol. 2008, 11, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacelli, C.; Bryan, R.A.; Onofri, S.; Selbmann, L.; Shuryak, I.; Dadachova, E. Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environ. Microbiol. 2017, 19, 1612–1624. [Google Scholar] [CrossRef]
- Abdel-Haliem, M.E.F.; Ali, M.F.; Ghaly, M.F.; Sakr, A.A. Efficiency of antibiotics and gamma irradiation in eliminating Streptomyces strains isolated from paintings of ancient Egyptian tombs. J. Cult. Herit. 2013, 14, 45–50. [Google Scholar] [CrossRef]
- Cortella, L.; Albino, C.; Tran, Q.-K.; Froment, K. 50 years of French experience in using gamma rays as a tool for cultural heritage remedial conservation. Radiat. Phys. Chem. 2020, 171, 108726. [Google Scholar] [CrossRef]
- Gliozzo, E.; Ionescu, C. Pigments—Lead-based whites, reds, yellows and oranges and their alteration phases. Archaeol. Anthropol. Sci. 2021, 14, 17. [Google Scholar] [CrossRef]
- Vagnini, M.; Vivani, R.; Sgamellotti, A.; Miliani, C. Blackening of lead white: Study of model paintings. J. Raman Spectrosc. 2020, 51, 1118–1126. [Google Scholar] [CrossRef]
- Negut, C.-D.; Bercu, V.; Duliu, O.-G. Defects induced by gamma irradiation in historical pigments. J. Cult. Herit. 2012, 13, 397–403. [Google Scholar] [CrossRef]
- Philippidis, A.; Mikallou, A.; Anglos, D. Determining optimum irradiation conditions for the analysis of vermilion by Raman spectroscopy. Eur. Phys. J. Plus 2021, 136, 1194. [Google Scholar] [CrossRef]
- Yu, B.-S.; Fang, J.-N.; Huang, E.-P. Characteristics of the Raman spectra of archaeological Malachites. J. Raman Spectrosc. 2013, 44, 630–636. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 1491–1521. [Google Scholar] [CrossRef] [PubMed]
- Gutman, M.; Lesar-Kikelj, M.; Mladenovič, A.; Čobal-Sedmak, V.; Križnar, A.; Kramar, S. Raman microspectroscopic analysis of pigments of the Gothic wall painting from the Dominican Monastery in Ptuj (Slovenia). J. Raman Spectrosc. 2014, 45, 1103–1109. [Google Scholar] [CrossRef] [Green Version]
- Petrova, O.; Pankin, D.; Povolotckaia, A.; Borisov, E.; Krivul’ko, T.; Kurganov, N.; Kurochkin, A. Pigment palette study of the XIX century plafond painting by Raman spectroscopy. J. Cult. Herit. 2019, 37, 233–237. [Google Scholar] [CrossRef]
- Luo, M.; Bo, P.; Shao, Y.; Liu, Z.; Xu, D.; Ma, L. Study on the Influence of Electron Beam Radiation Sterilization Method on Chinese Mural Pigment. Processes 2023, 11, 1403. [Google Scholar] [CrossRef]
Irradiation Dose (kGy) | Incubation Time (Day) | Bac | Pse | Str.g | Str.v | PNC |
---|---|---|---|---|---|---|
5.1 ± 0.2 | 0 | × | × | × | × | |
1 | × | 1 | × | × | ||
3 | × | × | × | × | ||
5 | × | × | × | × | ||
8 | × | 1 | × | × | ||
10.5 ± 1.4 | 0 | × | × | × | × | × |
1 | × | 1 | × | × | 3 | |
3 | 3 | × | × | × | 3 | |
5 | × | × | × | × | 3 | |
8 | × | × | × | × | 3 | |
20.3 ± 1.8 | 0 | × | × | × | × | × |
1 | × | × | × | × | 3 | |
3 | × | × | × | × | 3 | |
5 | × | × | × | × | 3 | |
8 | × | × | × | × | 3 |
Pigment | Unirradiated | Irradiated | |||||
---|---|---|---|---|---|---|---|
L* | a* | b* | ΔL* | Δa* | Δb* | ΔE* | |
Cinnabar | 46.54 ± 0.62 | 40.31 ± 0.33 | 17.62 ± 0.33 | −0.19 | 0.38 | 0.64 | 0.77 |
Malachite | 64.76 ± 0.34 | −21.34 ± 0.11 | 6.04 ± 0.11 | −0.47 | 0.42 | −0.03 | 0.63 |
Azurite | 56.08 ± 0.165 | −13.73 ± 0.03 | −16.73 ± 0.23 | −0.15 | 0.04 | −0.46 | 0.48 |
Ferric oxide | 39.01 ± 0.79 | 16.72 ± 0.25 | 11.05 ± 0.29 | 0.15 | −0.17 | −0.29 | 0.37 |
Lead tetroxide | 62.96 ± 0.20 | 54.76 ± 0.49 | 54.81 ± 0.84 | 0.46 | −1.08 | 1.08 | 1.59 |
Lead white | 96.16 ± 2.42 | −0.37 ± 0.18 | 2.37 ± 0.13 | −3.53 | 0.48 | 4.27 | 5.56 |
Pigment | Average Released Material (mg/cm2) | |||||
---|---|---|---|---|---|---|
Unirradiated Group | Irradiated Group | |||||
L | R | ΔM/% | L | R | ΔM/% | |
Cinnabar | 1.62 | 1.60 | −2.25 | 0.92 | 1.15 | 24.52 |
Malachite | 1.33 | 1.36 | 1.98 | 1.28 | 1.23 | −4.87 |
Azurite | 1.24 | 1.18 | −5.39 | 1.04 | 1.14 | 9.63 |
Ferric oxide | 0.42 | 0.42 | 0.89 | 0.82 | 0.91 | 11.08 |
Lead tetroxide | 1.33 | 1.44 | 9.13 | 1.44 | 1.28 | −11.1 |
Lead white | 2.06 | 1.88 | −9.11 | 1.85 | 2.00 | 9.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Luo, M.; Shao, Y.; Ma, L.; Wu, M. Preliminary Study on the Feasibility of Radiation Technique for Mural Protection. Processes 2023, 11, 1710. https://doi.org/10.3390/pr11061710
Wang Z, Luo M, Shao Y, Ma L, Wu M. Preliminary Study on the Feasibility of Radiation Technique for Mural Protection. Processes. 2023; 11(6):1710. https://doi.org/10.3390/pr11061710
Chicago/Turabian StyleWang, Zesheng, Min Luo, Yang Shao, Lingling Ma, and Minghong Wu. 2023. "Preliminary Study on the Feasibility of Radiation Technique for Mural Protection" Processes 11, no. 6: 1710. https://doi.org/10.3390/pr11061710
APA StyleWang, Z., Luo, M., Shao, Y., Ma, L., & Wu, M. (2023). Preliminary Study on the Feasibility of Radiation Technique for Mural Protection. Processes, 11(6), 1710. https://doi.org/10.3390/pr11061710