Antimicrobial Potential of Tara Hydroalcoholic Extract (Caesalpinia spinosa) against Streptococcus Associated with Strep Throat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Hydroalcoholic Extract Obtaining
2.3. Detection of Phytoconstituents
2.3.1. Tannin Detection (Fraction A)
2.3.2. Flavonoid Detection (Fraction A, D, E)
2.3.3. Steroid Detection (Fraction B, C, D)
2.3.4. Detection of Cardenolides (Fraction C)
2.3.5. Alkaloid Detection (Fraction C and D)
2.4. Discs with Tara Hydroalcoholic Extract and Inoculum of Streptococcus Preparation
2.5. Antibiotic Sensitivity of β-Hemolytic Streptococci by Diffusion Agar Test
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanwal, S.; Vaitla, P. Streptococcus Pyogenes. In StatPearls [Internet]; StatPearls Publishing: Rockville, MD, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554528/ (accessed on 8 May 2023).
- Castro, S.A.; Dorfmueller, H.C. A Brief Review on Group A Streptococcus Pathogenesis and Vaccine Development. R. Soc. Open Sci. 2021, 8, 201991. [Google Scholar] [CrossRef] [PubMed]
- Wijesundara, N.M.; Lee, S.F.; Cheng, Z.; Davidson, R.; Rupasinghe, H.P.V. Carvacrol Exhibits Rapid Bactericidal Activity against Streptococcus Pyogenes through Cell Membrane Damage. Sci. Rep. 2021, 11, 1487. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V. Mechanisms of Antibiotic Resistance. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations [Internet]; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 10 February 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK333414/ (accessed on 8 May 2023).
- Yu, D.; Zheng, Y.; Yang, Y. Is There Emergence of β-Lactam Antibiotic-Resistant Streptococcus Pyogenes in China? Infect. Drug Resist. 2020, 13, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Kebede, D.; Admas, A.; Mekonnen, D. Prevalence and Antibiotics Susceptibility Profiles of Streptococcus Pyogenes among Pediatric Patients with Acute Pharyngitis at Felege Hiwot Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Microbiol. 2021, 21, 135. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277–283. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/ (accessed on 8 May 2023).
- Abraham, T.; Sistla, S. Trends in Antimicrobial Resistance Patterns of Group A Streptococci, Molecular Basis and Implications. Indian J. Med. Microbiol. 2018, 36, 186–191. [Google Scholar] [CrossRef]
- Alves-Barroco, C.; Rivas-García, L.; Fernandes, A.R.; Baptista, P.V. Tackling Multidrug Resistance in Streptococci—From Novel Biotherapeutic Strategies to Nanomedicines. Front. Microbiol. 2020, 11, 579916. [Google Scholar] [CrossRef]
- Welz, A.N.; Emberger-Klein, A.; Menrad, K. Why People Use Herbal Medicine: Insights from a Focus-Group Study in Germany. BMC Complement. Altern. Med. 2018, 18, 92. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, M.; Guo, H.; Zheng, G.; Yang, J.; Lu, A. Chinese Herbal Medicines for Rheumatoid Arthritis. In Advances in Botanical Research; Shyur, L.-F., Lau, A.S.Y., Eds.; Elsevier: San Diego, CA, USA, 2012; Volume 62, pp. 273–313. ISBN 9780123945914. [Google Scholar]
- Woo, C.S.J.; Lau, J.S.H.; El-Nezami, H. Herbal Medicine. In Advances in Botanical Research; Shyur, L.-F., Lau, A.S.Y., Eds.; Elsevier: San Diego, CA, USA, 2012; Volume 62, pp. 365–384. ISBN 9780123945914. [Google Scholar]
- Nguyen-Vo, T.-H.; Nguyen, L.; Do, N.; Nguyen, T.-N.; Trinh, K.; Cao, H.; Le, L. Plant Metabolite Databases: From Herbal Medicines to Modern Drug Discovery. J. Chem. Inf. Model. 2020, 60, 1101–1110. [Google Scholar] [CrossRef]
- Shafi, A.; Zahoor, I. Metabolomics of Medicinal and Aromatic Plants: Goldmines of Secondary Metabolites for Herbal Medicine Research. In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K.R., Eds.; Elsevier: San Diego, CA, USA, 2021; pp. 261–287. ISBN 9780128195901. [Google Scholar]
- Wijesundara, N.M.; Rupasinghe, H.P.V. Herbal Tea for the Management of Pharyngitis: Inhibition of Streptococcus Pyogenes Growth and Biofilm Formation by Herbal Infusions. Biomedicines 2019, 7, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Nandy, S.; Mundhra, A.; Das, N.; Pandey, D.K.; Dey, A. A Review on Antimicrobial Botanicals, Phytochemicals and Natural Resistance Modifying Agents from Apocynaceae Family: Possible Therapeutic Approaches against Multidrug Resistance in Pathogenic Microorganisms. Drug Resist. Updates 2020, 51, 100695. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.C. Antimicrobial E¡ect of Cinnamon Extract. Taiwan. J. Agric. Chem. Food Sci. 2000, 38, 184–193. [Google Scholar]
- Hsieh, P.-C.; Mau, J.-L.; Huang, S.-H. Antimicrobial Effect of Various Combinations of Plant Extracts. Food Microbiol. 2001, 18, 35–43. [Google Scholar] [CrossRef]
- Gismondi, A.; Di Marco, G.; Redi, E.L.; Ferrucci, L.; Cantonetti, M.; Canini, A. The Antimicrobial Activity of Lavandula Angustifolia Mill. Essential Oil against Staphylococcus Species in a Hospital Environment. J. Herb. Med. 2021, 26, 100426. [Google Scholar] [CrossRef]
- Giovannini, D.; Gismondi, A.; Basso, A.; Canuti, L.; Braglia, R.; Canini, A.; Mariani, F.; Cappelli, G. Lavandula Angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus Aureus. Immunol. Investig. 2016, 45, 11–28. [Google Scholar] [CrossRef]
- Friso, F.; Mendive, F.; Soffiato, M.; Bombardelli, V.; Hesketh, A.; Heinrich, M.; Menghini, L.; Politi, M. Implementation of Nagoya Protocol on Access and Benefit-Sharing in Peru: Implications for Researchers. J. Ethnopharmacol. 2020, 259, 112885. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Sharon, D. Traditional Medicinal Plant Use in Northern Peru: Tracking Two Thousand Years of Healing Culture. J. Ethnobiol. Ethnomed. 2006, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Cierto, L.E.O.; Quintana, E.D.; Escalante, C.A.; Dumont, J.R.D.; Curo, G.G. Diversity, Abundance and Ecological Importance of Plant Species for Medical Use in Tropical Forest of Tingo Maria, Peru. Bol. Malariol. Salud Ambient. 2022, 62, 1055–1066. [Google Scholar] [CrossRef]
- Corroto, F.; Gamarra Torres, O.A.; Macía, M.J. Different Patterns in Medicinal Plant Use along an Elevational Gradient in Northern Peruvian Andes. J. Ethnopharmacol. 2019, 239, 111924. [Google Scholar] [CrossRef] [PubMed]
- de Pascoa Júnior, J.G.; Souza, C.L.L. de Medicinal Plants Used in the Amazon Region: A Systematic Review. Res. Soc. Dev. 2021, 10, e163101419965. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Glenn, A. Medicinal Plants Used in Peru for the Treatment of Respiratory Disorders. Rev. Peru. Biol. 2010, 17, 331–346. [Google Scholar]
- Villena Velásquez, J.J.; Seminario Cunya, J.F.; Valderrama Cabrera, M.A. Variabilidad Morfológica de La ‘Tara’ Caesalpinia spinosa (Molina.) Kuntze (Fabaceae), En Poblaciones Naturales de Cajamarca: Descriptores de Fruto y Semilla. Arnaldoa 2019, 26, 555–574. [Google Scholar]
- Skowyra, M.; Janiewicz, U.; Salejda, A.M.; Krasnowska, G.; Almajano, M.P. Effect of Tara (Caesalpinia spinosa) Pod Powder on the Oxidation and Colour Stability of Pork Meat Batter during Chilled Storage. Food Technol. Biotechnol. 2015, 53, 419–427. [Google Scholar] [CrossRef]
- Salirrosas, D.; Reategui-Pinedo, N.; Crespo, J.P.; Sánchez-Tuesta, L.; Arqueros, M.; Cabrera, A.; Martinez, R.M.; Ayala, C.; Baby, A.R.; Prieto, Z.A. Safety Profile of Caesalpinia spinosa Aqueous Extract Tested in Oreochromis Niloticus Toward Its Application in Dermocosmetics. Front. Sustain. 2021, 2, 696289. [Google Scholar] [CrossRef]
- Ramesh, C.H.; Vinithkumar, N.V.; Kirubagaran, R. Marine pigmented bacteria: A prospective source of antibacterial compounds. J. Nat. Sci. Biol. Med. 2019, 10, 104–113. [Google Scholar] [CrossRef]
- Cholán Pacheco, K.; Zavaleta Espejo, G.; Saldaña Jiménez, J.; Blas Cerdán, W. Efecto Del Extracto Hidroalcohólico de Caesalpinia spinosa (Fabaceae) Sobre El Crecimiento de Salmonella Typhi y Escherichia Coli. Arnaldoa 2019, 26, 699–712. [Google Scholar]
- Lock Sing de Ugaz, O. Investigación Fitoquímica: Métodos En El Estudio de Productos Naturales; Pontificia Universidad Católica del Perú: Lima, Peru, 2022; ISBN 9786124664779. [Google Scholar]
- Carvajal Rojas, L.; Uribe, Y.H.; Sierra Martínez, N.; Rueda Niño, D. Análisis fitoquímico preliminar de hojas, tallos y semillas de cupatá (Strychnos schultesiana Krukoff). Colomb. For. 2008, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Clsi Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2013; ISBN 9781562388669.
- Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General overview of medicinal plants: A review. J. Phytopharm. 2017, 6, 349–351. [Google Scholar] [CrossRef]
- Orlando, S.C. Evaluación de la Actividad Antimicrobiana del Extracto Hidroalcohólico Crudo Obtenido de Hojas de Stryhorodendrona Dstringes (Martius) Coville (Barbatimao); Universidad de Francia: Lima, Peru, 2005. [Google Scholar]
- Carrillo-Tomalá, C.; Díaz-Torres, R. Actividad Antimicrobiana de Extractos Hidroalcohólicos de Hojas de Dos Variedades de Mangifera indica L. Revista Ciencia Unemi 2020, 13, 69–77. [Google Scholar] [CrossRef]
- Verdecía, D.M.; Herrera-Herrera, R.d.C.; Torres, E.; Sánchez, A.R.; Hernández-Montiel, L.G.; Herrera, R.S.; Ramírez, J.L.; Bodas, R.; Giráldez, F.J.; Guillaume, J.; et al. Metabolitos primarios y secundario de seis especies de árboles, arbustos y leguminosas herbáceas. Cuban J. Agric. Sci. 2021, 55, 77–93. [Google Scholar]
- Hussein, R.A.; El-Anssary, A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In Herbal Medicine; IntechOpen: London, UK, 2019; ISBN 9781789847826. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros-Ramírez, R.; Durán, M.I.; Fiorentino, S. Genotoxicity and Mutagenicity Assessment of a Standardized Extract (P2Et) Obtained from Caesalpinia spinosa. Toxicol. Rep. 2021, 8, 258–263. [Google Scholar] [CrossRef]
- Tian, F.; Li, B.; Ji, B.; Zhang, G.; Luo, Y. Identification and Structure–Activity Relationship of Gallotannins Separated from Galla Chinensis. Lebenson. Wiss. Technol. 2009, 42, 1289–1295. [Google Scholar] [CrossRef]
- Aguilar-Galvez, A.; Noratto, G.; Chambi, F.; Debaste, F.; Campos, D. Potential of Tara (Caesalpinia spinosa) Gallotannins and Hydrolysates as Natural Antibacterial Compounds. Food Chem. 2014, 156, 301–304. [Google Scholar] [CrossRef]
- Kim, T.J.; Silva, J.L.; Kim, M.K.; Jung, Y.S. Enhanced Antioxidant Capacity and Antimicrobial Activity of Tannic Acid by Thermal Processing. Food Chem. 2010, 118, 740–746. [Google Scholar] [CrossRef]
- Salehi, B.; Ata, A.; Anil Kumar, N.V.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Tsouh Fokou, P.V.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Kumar, S. Applications of Tannins in Industry. In Tannins—Structural Properties, Biological Properties and Current Knowledge; IntechOpen: London, UK, 2020; ISBN 9781789847963. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, A.; Booth, B.W. Biomedical Applications of Tannic Acid. J. Biomater. Appl. 2022, 36, 1503–1523. [Google Scholar] [CrossRef]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial Enzymes and Antibiotic Resistance. Acta Nat. 2018, 10, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Noma, S.A.A.; Ulu, A.; Acet, Ö.; Sanz, R.; Sanz-Pérez, E.S.; Odabaşı, M.; Ateş, B. Comparative Study of ASNase Immobilization on Tannic Acid-Modified Magnetic Fe3O4/SBA-15 Nanoparticles to Enhance Stability and Reusability. New J. Chem. 2020, 44, 4440–4451. [Google Scholar] [CrossRef]
- Deng, L.; Qi, Y.; Liu, Z.; Xi, Y.; Xue, W. Effect of Tannic Acid on Blood Components and Functions. Colloids Surf. B Biointerfaces 2019, 184, 110505. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- D’Amelia, V.; Aversano, R.; Chiaiese, P.; Carputo, D. The Antioxidant Properties of Plant Flavonoids: Their Exploitation by Molecular Plant Breeding. Phytochem. Rev. 2018, 17, 611–625. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-Inflammatory and Anti-Allergic Potential of Dietary Flavonoids: A Review. Biomed. Pharmacother. 2022, 156, 113945. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral Activities of Flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef] [PubMed]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Doğan, A.; Otlu, S.; Çelebï, Ö.; Aksu Kiliçle, P.; Gülmez Sağlam, A.; Doğan, A.N.C.; Mutlu, N. An investigation of antibacterial effects of steroids. Turk. J. Vet. Anim. Sci. 2017, 41, 302–305. [Google Scholar] [CrossRef]
- Tarkowská, D. Plants Are Capable of Synthesizing Animal Steroid Hormones. Molecules 2019, 24, 2585. [Google Scholar] [CrossRef] [Green Version]
- Acho, M.H.; Perfecto, D.R. Efecto Antibacteriano de Caesalpinia spinosa (Tara) Sobre Flora Salival Mixta. Odontol. Sanmarquina 2012, 15, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.A.; Asencios, R.S. Actividad antimicrobiana del extracto crudo de la vaina de Caesalpinia spinosa" tara" frente a Staphylococcus aureus. Científica 2009, 6, 142–155. [Google Scholar]
- Liu, H.; Lengua, L.A.; León, G.; Carla La Torre, D.; Huapaya, J.; Chauca, J. Evaluación de la Actividad Antibacteriana in vitro de los Extractos de Caesalpinia spinosa “tara” y Eucalyptus sp.“eucalipto”. Horiz. Médico 2002, 2. [Google Scholar]
- Das, S.; Sharangi, A.B.; Egbuna, C.; Jeevanandam, J.; Ezzat, S.M.; Adetunji, C.O.; Tijjani, H.; Olisah, M.C.; Patrick-Iwuanyanwu, K.C.; Adetunji, J.B.; et al. Health benefits of isoflavones found exclusively of plants of the Fabaceae family. In Functional Foods and Nutraceuticals; Springer International Publishing: Cham, Switzerland, 2020; pp. 473–508. ISBN 9783030423186. [Google Scholar] [CrossRef]
- Brook, I. Treatment Challenges of Group A Beta-Hemolytic Streptococcal Pharyngo-Tonsillitis. Int. Arch. Otorhinolaryngol. 2017, 21, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.B.; Garcia-Rojas, E.E. Recent Advances in the Encapsulation of Bioactive Ingredients Using Galactomannans-Based as Delivery Systems. Food Hydrocoll. 2021, 118, 106815. [Google Scholar] [CrossRef]
- Murray, P.R. The Clinician and the Microbiology Laboratory. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2015; pp. 191–223. ISBN 9781455748013. [Google Scholar]
- Gomes, C.; Martínez-Puchol, S.; Palma, N.; Horna, G.; Ruiz-Roldán, L.; Pons, M.J.; Ruiz, J. Macrolide Resistance Mechanisms in Enterobacteriaceae: Focus on Azithromycin. Crit. Rev. Microbiol. 2017, 43, 1–30. [Google Scholar] [CrossRef]
- Wei, B.; Kang, M. Molecular Basis of Macrolide Resistance In Campylobacter Strains Isolated from Poultry in South Korea. Biomed. Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ghaedi, F.; Dehghan, M.; Salari, M.; Sheikhrabori, A. Complementary and Alternative Medicines: Usage and Its Determinant Factors among Outpatients in Southeast of Iran: Usage and Its Determinant Factors among Outpatients in Southeast of Iran. J. Evid. Based Complement. Altern. Med. 2017, 22, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.L.; Richards, N.; Harrison, J.; Barnes, J. Prevalence of Use of Traditional, Complementary and Alternative Medicine by the General Population: A Systematic Review of National Studies Published from 2010 to 2019. Drug Saf. 2022, 45, 713–735. [Google Scholar] [CrossRef] [PubMed]
- Tangkiatkumjai, M.; Boardman, H.; Walker, D.-M. Potential Factors That Influence Usage of Complementary and Alternative Medicine Worldwide: A Systematic Review. BMC Complement. Med. Ther. 2020, 20, 363. [Google Scholar] [CrossRef]
- Santiváñez-Acosta, R.; Valenzuela-Oré, F.; Angulo-Bazán, Y. Uso de terapias de medicina alternativa y complementaria en la provincia de Coronel Portillo, Ucayali, Perú. Rev. Peru. Med. Exp. Salud Publica 2020, 37, 510–515. [Google Scholar] [CrossRef]
- Robledo Restrepo, S.M.; Quintero, J.; Higuita, J.; Fernández, M.; Murillo, J.; Restrepo, A.; Arbeláez, N.; Montoya, A.; Ospina, V.; Pineda, T.; et al. Caesalpinia spinosa (Molina) Kuntze: Una Nueva Promesa Para El Tratamiento Tópico de La Leishmaniasis Cutánea. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2020, 44, 915–936. [Google Scholar] [CrossRef]
Fraction | Metabolite | Result * |
---|---|---|
A | Tannins | +++ |
Flavonoids | +++ | |
B | Steroids | + |
C | Cardenolics | - |
Steroids | - | |
Alkaloids | + | |
Flavonoids | + | |
D | Cardenolics | - |
Steroids | + | |
Alkaloids | - | |
E | Flavonoids | + |
Groups | Description | Mean | SD | p-Value | Cohen’s D |
---|---|---|---|---|---|
Erythromycin | Tara [250 mg/mL] | 16.05 | 0.94 | 0.08 | 0.66 |
Tara [500 mg/mL] | 18.99 | 1.10 | <0.01 | 2.87 | |
Tara [750 mg/mL] | 20.03 | 0.29 | <0.01 | 4.46 | |
Tara [1000 mg/mL] | 20.93 | 0.63 | <0.01 | 4.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Cruz-Noriega, M.; Benites, S.M.; Rodríguez-Haro, I.M.; Salazar-Castillo, M.L.; Rojas-Villacorta, W.; Otiniano, N.M.; Becerra-Gutiérrez, L.K.; Cabanillas-Chirinos, L.; Mendoza-Villanueva, K.; Rojas-Flores, S. Antimicrobial Potential of Tara Hydroalcoholic Extract (Caesalpinia spinosa) against Streptococcus Associated with Strep Throat. Processes 2023, 11, 1754. https://doi.org/10.3390/pr11061754
De La Cruz-Noriega M, Benites SM, Rodríguez-Haro IM, Salazar-Castillo ML, Rojas-Villacorta W, Otiniano NM, Becerra-Gutiérrez LK, Cabanillas-Chirinos L, Mendoza-Villanueva K, Rojas-Flores S. Antimicrobial Potential of Tara Hydroalcoholic Extract (Caesalpinia spinosa) against Streptococcus Associated with Strep Throat. Processes. 2023; 11(6):1754. https://doi.org/10.3390/pr11061754
Chicago/Turabian StyleDe La Cruz-Noriega, Magaly, Santiago M. Benites, Icela M. Rodríguez-Haro, Marco L. Salazar-Castillo, W. Rojas-Villacorta, N. M. Otiniano, Lizzie Karen Becerra-Gutiérrez, Luis Cabanillas-Chirinos, K. Mendoza-Villanueva, and S. Rojas-Flores. 2023. "Antimicrobial Potential of Tara Hydroalcoholic Extract (Caesalpinia spinosa) against Streptococcus Associated with Strep Throat" Processes 11, no. 6: 1754. https://doi.org/10.3390/pr11061754
APA StyleDe La Cruz-Noriega, M., Benites, S. M., Rodríguez-Haro, I. M., Salazar-Castillo, M. L., Rojas-Villacorta, W., Otiniano, N. M., Becerra-Gutiérrez, L. K., Cabanillas-Chirinos, L., Mendoza-Villanueva, K., & Rojas-Flores, S. (2023). Antimicrobial Potential of Tara Hydroalcoholic Extract (Caesalpinia spinosa) against Streptococcus Associated with Strep Throat. Processes, 11(6), 1754. https://doi.org/10.3390/pr11061754