Research on State Evaluation of Petrochemical Plants Based on Improved TOPSIS Method and Combined Weight
Abstract
:1. Introduction
2. Methodology
2.1. TOPSIS
- (1)
- Establish an evaluation matrix A
- (2)
- Calculate the value matrix V
- (3)
- Determine the positive ideal solution S+ and negative ideal solution S−.
- i.
- Cost index
- ii.
- Benefit index
- (4)
- Solve the closeness degree D.
2.2. Improved TOPSIS for State Evaluation of Petrochemical Plants
2.2.1. Improved Methods for Determining Positive Ideal Solution and Negative Ideal Solution
- (1)
- The determination of positive ideal solution
- i.
- Fixed-value index
- ii.
- Fixed-interval index
- (2)
- The determination of negative ideal solution
2.2.2. Combined Weight of Evaluation Index System
- i.
- The subjective weight coefficient α based on importance levels
- ii.
- The objective weight based on the entropy weight method
- iii.
- The combined weight ωj
2.2.3. Health Index
- i.
- ii.
3. Application
3.1. Background
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhen, W.; Wilson, P.; Wang, Q. Evacuation simulation of confined spaces in petrochemical facilities. Process Saf. Prog. 2016, 35, 270–275. [Google Scholar]
- Sun, J.; Sun, D.; Asif, M.; Fang, B.; Bai, Y.; Qin, W.; Pan, T.; Jiang, J.; Zhang, M.; Wang, Z. Insight into the safety distance of ground and underground installations in typical petrochemical plants. J. Loss Prev. Process Ind. 2021, 69, 104355. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Q.; Zhang, F.; Yang, C.; Li, Y.; Zhou, C. Fuzzy comprehensive evaluation strategy for operating state of electrocoagulation purification process based on sliding window. Process Saf. Environ. Prot. 2022, 165, 217–229. [Google Scholar] [CrossRef]
- Deng, Z.; Han, T.; Cheng, Z.; Jiang, J.; Duan, F. Fault detection of petrochemical process based on space-time compressed matrix and Naive Bayes. Process Saf. Environ. Prot. 2022, 160, 327–340. [Google Scholar] [CrossRef]
- Zhao, D.; Li, H.; Zhou, F.; Zhong, Y.; Zhang, G.; Liu, Z.; Hou, J. Research progress on data-driven methods for battery states estimation of electric buses. World Electr. Veh. J. 2023, 14, 145. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, W.; Cui, Y.; Deng, S. Dynamic Evaluation of the Degradation Process of Vibration Performance for Machine Tool Spindle Bearings. Sensors 2023, 23, 5325. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, Z.; Hu, H.; Han, Y.; Lin, X.; Zhong, Y. A fault detection method based on horizontal visibility graph-integrated complex networks: Application to complex chemical processes. Can. J. Chem. Eng. 2019, 97, 1129–1138. [Google Scholar] [CrossRef]
- Gu, Z.; Pang, S.; Zhou, W.; Li, Y.; Li, Q. An online data-driven LPV modeling method for turbo-shaft engines. Energies 2022, 15, 1255. [Google Scholar] [CrossRef]
- Ge, Z.; Song, Z.; Gao, F. Review of Recent Research on Data-Based Process Monitoring. Ind. Eng. Chem. Res. 2013, 52, 3543–3562. [Google Scholar] [CrossRef]
- Liu, N.; Hu, M.; Wang, J.; Ren, Y.; Tian, W. Fault detection and diagnosis using Bayesian network model combining mechanism correlation analysis and process data: Application to unmonitored root cause variables type faults. Process Saf. Environ. Prot. 2022, 164, 15–29. [Google Scholar] [CrossRef]
- Fazai, R.; Mansouri, M.; Abodayeh, K.; Nounou, H.; Nounou, M. Online reduced kernel PLS combined with GLRT for fault detection in chemical systems. Process Saf. Environ. Prot. 2019, 128, 228–243. [Google Scholar] [CrossRef]
- Aggoun, L.; Chetouani, Y. Fault detection strategy combining NARMAX model and Bhattacharyya distance for process monitoring. J. Frankl. Inst. 2021, 358, 2212–2228. [Google Scholar] [CrossRef]
- Peng, K.; Guo, Y. Fault detection and quantitative assessment method for process industry based on feature fusion. Measurement 2022, 197, 111267. [Google Scholar] [CrossRef]
- Han, Q.; Li, W.; Xu, Q.; Song, Y.; Fan, C.; Zhao, M. Novel measures for linguistic hesitant Pythagorean fuzzy sets and improved TOPSIS method with application to contributions of system-of-systems. Expert Syst. Appl. 2022, 199, 117088. [Google Scholar] [CrossRef]
- Cai, M.; Hong, Y. Improved TOPSIS method considering fuzziness and randomness in multi-attribute group decision making. Mathematics 2022, 10, 4200. [Google Scholar] [CrossRef]
- Boran, F.E.; Genç, S.; Kurt, M.; Akay, D. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 2009, 36, 11363–11368. [Google Scholar] [CrossRef]
- Salih, M.M.; Zaidan, B.; Zaidan, A.; Ahmed, M.A. Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Comput. Oper. Res. 2019, 104, 207–227. [Google Scholar] [CrossRef]
- Özcan, A.; Ünlüsoy, S.; Eren, T. A combined goal programming-AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants. Renew. Sustain. Energy Rev. 2017, 78, 1410–1423. [Google Scholar] [CrossRef]
- Kahraman, C.; Engin, O.; Kabak, Z.; Kaya, I. Information systems outsourcing decisions using a group decision-making approach. Eng. Appl. Artif. Intell. 2009, 22, 832–841. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Shao, X.; Wen, L.; Zhi, J. A PSO-Fuzzy group decision-making support system in vehicle performance evaluation. Math. Comput. Model. Int. J. 2010, 52, 1921–1931. [Google Scholar] [CrossRef]
- Rao, P.; Baral, S. Attribute based specification, comparison and selection of feed stock for anaerobic digestion using MADM approach. J. Hazard. Mater. 2011, 186, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Cai, J. Evaluation of oil-paper insulation condition based on fuzzy matter element-technique for order preference by similarity to ideal solution method. Trans. China Electrotech. Soc. 2018, 33, 5381–5389. [Google Scholar]
- Liu, Z.; Wang, T. Real-time safety assessment method of driving behavior based on improved TOPSIS. J. Chongqing Univ. Technol. (Nat. Sci.) 2021, 35, 58–66. [Google Scholar]
- Bekesiene, S.; Vasiliauskas, A.V.; Hošková-Mayerová, Š.; Vasilienė-Vasiliauskienė, V. Comprehensive assessment of distance learning modules by fuzzy AHP-TOPSIS method. Mathematics 2021, 9, 409. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, W.; Guo, X.; Hu, H.; Fu, C.; Liu, Y. Multi-indicators decision for product design solutions: A TOPSIS-MOGA integrated model. Processes 2022, 10, 303. [Google Scholar] [CrossRef]
- Krohling, R.; Pacheco, A. A-TOPSIS-an approach based on TOPSIS for ranking evolutionary algorithms. Procedia Comput. Sci. 2015, 55, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-W.; Li, E.-Q.; Sun, Y.-Y.; Dong, B.-T. Research on the operation safety evaluation of urban rail stations based on the improved TOPSIS method and entropy weight method. J. Rail Transp. Plan. Manag. 2021, 20, 100262. [Google Scholar] [CrossRef]
- Huang, Z.; Yue, H.; He, Q. Method of TFN-TOPSIS Based on Possibility Degree Relation Model and Its Application in the Patent Value Estimation of Self-Balancing Vehicles. Sustainability 2023, 15, 3793. [Google Scholar] [CrossRef]
- Abdullah, F.; Al-Ahmari, A.; Anwar, S. An integrated fuzzy DEMATEL and fuzzy TOPSIS method for analyzing smart manufacturing technologies. Processes 2023, 11, 906. [Google Scholar] [CrossRef]
- Nahvi, M.; Koohi, A.; Sedighi, M. Thermodynamic analysis and techno-economic assessment of fluid catalytic cracking unit in the oil refining process. J. Clean. Prod. 2023, 413, 137447. [Google Scholar] [CrossRef]
No. | Tag Number | Unit | Control Limit | Optimal Interval | Type |
---|---|---|---|---|---|
1 | AI1001 | % | 1~7 | 2–4 | Fixed-interval index |
2 | FIC1018 | m3/min | 100~200 | 180 | Fixed-value index |
3 | FIC1019 | m3/min | 30~100 | 80 | Fixed-value index |
4 | LIC1001 | t | 40~110 | 85 | Fixed-value index |
5 | LIC1005 | t | 120~200 | 150 | Fixed-value index |
6 | PI1055 | kPa | 190~270 | 210–250 | Fixed-interval index |
7 | PIC1001 | kPa | 220~285 | 230–270 | Fixed-interval index |
8 | TI1079A | °C | 660~720 | 695–700 | Fixed-interval index |
9 | TI1079B | °C | 660~720 | 695–700 | Fixed-interval index |
10 | TI1079C | °C | 660~720 | 695–700 | Fixed-interval index |
11 | TI1079D | °C | 660~720 | 695–700 | Fixed-interval index |
12 | TIC1001 | °C | 500~530 | 518 | Fixed-value index |
13 | TIC1005 | °C | 500~530 | 526 | Fixed-value index |
14 | TIC1008 | °C | 660~720 | 685 | Fixed-value index |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Yuan, Z.; Gou, C.; Xu, W.; Wang, C.; Li, C. Research on State Evaluation of Petrochemical Plants Based on Improved TOPSIS Method and Combined Weight. Processes 2023, 11, 1799. https://doi.org/10.3390/pr11061799
Lin Y, Yuan Z, Gou C, Xu W, Wang C, Li C. Research on State Evaluation of Petrochemical Plants Based on Improved TOPSIS Method and Combined Weight. Processes. 2023; 11(6):1799. https://doi.org/10.3390/pr11061799
Chicago/Turabian StyleLin, Yang, Zhuang Yuan, Chengdong Gou, Wei Xu, Chunli Wang, and Chuankun Li. 2023. "Research on State Evaluation of Petrochemical Plants Based on Improved TOPSIS Method and Combined Weight" Processes 11, no. 6: 1799. https://doi.org/10.3390/pr11061799
APA StyleLin, Y., Yuan, Z., Gou, C., Xu, W., Wang, C., & Li, C. (2023). Research on State Evaluation of Petrochemical Plants Based on Improved TOPSIS Method and Combined Weight. Processes, 11(6), 1799. https://doi.org/10.3390/pr11061799