Research on Micromechanical Behavior of Current Collector of Lithium-Ion Batteries Battery Cathode during the Calendering Process
Abstract
:1. Introduction
2. Materials and Methods
3. Numerical Simulation
3.1. Lithium-Ion Cathode Model
3.2. Calendering Process Simulation
3.3. Current Collector Model
3.3.1. Crystal Plasticity Theory
3.3.2. The Polycrystalline Model of Current Collector
3.4. The Application of Calendering Load
4. Results and Discussion
4.1. Morphology Evolution of Current Collector
4.2. The Stress of Current Collector in Calendering Process
4.3. The Number of Grains and Current Collector Stress
4.4. Crystal Orientation and Current Collector Stress
5. Conclusions
- (1)
- The stress distribution in the cathode current collector is non-uniform during calendering, exhibiting significant variations.
- (2)
- Plastic deformation occurs in the cathode current collector during the calendering process.
- (3)
- The current collector with fewer grains experiences more pronounced stress concentrations and is more sensitive to crystal orientation.
- (4)
- As the number of grains increases, the stress distribution in the current collector becomes more uniform, and it becomes less sensitive to crystal orientation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y. Lithium-ion battery: One of the most important inventions in the 20th century. Chin. Sci. Bull. 2019, 64, 3811–3816. [Google Scholar]
- Liu, Y.; Zhang, R.; Wang, J.; Wang, Y. Current and future lithium-ion battery manufacturing. IScience 2021, 24, 102332. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Liang, Z.; Zhu, S.; Yang, L.; Ma, L.; Song, W.-L.; Chen, H. Mechanical Analysis and Strength Checking of Current Collector Failure in the Winding Process of Lithium-Ion Batteries. Acta Mech. Solida Sin. 2021, 34, 297–306. [Google Scholar] [CrossRef]
- Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321. [Google Scholar] [CrossRef]
- Doberdò, I.; Löffler, N.; Laszczynski, N.; Cericola, D.; Penazzi, N.; Bodoardo, S.; Kim, G.T.; Passerini, S. Enabling aqueous binders for lithium battery cathodes—Carbon coating of aluminum current collector. J. Power Sources 2014, 248, 1000–1006. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Gao, H.; Yan, S.; Chen, S.; Liu, X.; Hu, X. Rolled electrodeposited copper foil with modified surface morphology as anode current collector for high performance lithium-ion batteries. Surf. Coat. Technol. 2021, 410, 126881. [Google Scholar] [CrossRef]
- Wang, C.K.; Kuan, Y.D. Characteristics of Carbon Fiber Composite Current Collector Used in Proton Exchange Membrane Fuel Cell. Sens. Mater. 2021, 33, 3931–3940. [Google Scholar] [CrossRef]
- Schlaier, J.; Cangaz, S.; Maletti, S.; Heubner, C.; Abendroth, T.; Schneider, M.; Kaskel, S.; Michaelis, A. Electrochemical Patterning of Cu Current Collectors: An Enabler for Pure Silicon Anodes in High-Energy Lithium-Ion Batteries. Adv. Mater. Interfaces 2022, 9, 2200507. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Wang, J.; Li, R.; Sun, X. Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J. Power Sources 2013, 237, 41–46. [Google Scholar] [CrossRef]
- Sethuraman, V.A.; Chon, M.J.; Shimshak, M.; Srinivasan, V.; Guduru, P.R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 2010, 195, 5062–5066. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.M.C.; Silberstein, M.N.; White, S.R.; Sottos, N.R. In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling. Exp. Mech. 2014, 54, 971–985. [Google Scholar] [CrossRef]
- Manikkavel, A.; Kumar, V.; Lee, D.J. Simple fracture model for an electrode and interfacial crack in a dielectric elastomer under tensile loading. Theor. Appl. Fract. Mech. 2020, 108, 102626. [Google Scholar] [CrossRef]
- Lederer, M.; Gröger, V.; Khatibi, G.; Weiss, B. Size dependency of mechanical properties of high purity aluminium foils. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2010, 527, 590–599. [Google Scholar] [CrossRef]
- Meng, B.; Wang, W.H.; Zhang, Y.Y.; Wan, M. Size effect on plastic anisotropy in microscale deformation of metal foil. J. Mater. Process. Technol. 2019, 271, 46–61. [Google Scholar] [CrossRef]
- Taylor, G.I.; Elam, C.F. Bakerian Lecture: The distortion of an aluminium crystal during a tensile test. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1923, 102, 643–667. [Google Scholar]
- Taylor, G.I.; Elam, C.F. The plastic extension and fracture of aluminium crystals. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1925, 108, 28–51. [Google Scholar]
- Taylor, G.I. The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1934, 145, 362–387. [Google Scholar]
- Schmid, E.; Boas, W. Plasticity of Crystals, 1st ed.; F.A. Hughes & Co. Limited: London, UK, 1950. [Google Scholar]
- Taylor, G.I. Plastic strain in metals. J. Jpn. Inst. Met. Mater. 1938, 62, 307–324. [Google Scholar]
- Hill, R. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 1966, 14, 95–102. [Google Scholar] [CrossRef]
- Hill, R.; Rice, J. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 1972, 20, 401–413. [Google Scholar] [CrossRef]
- Huang, Y.G. A User-Material Subroutine Incroporating Single Crystal Plasticity in the ABAQUS Finite Element Program; Harvard Univ.: Cambridge, UK, 1991. [Google Scholar]
- Lu, C.; Deng, G.Y.; Tieu, A.K.; Su, L.H.; Zhu, H.T.; Liu, X.H. Crystal plasticity modeling of texture evolution and heterogeneity in equal channel angular pressing of aluminum single crystal. Acta Mater. 2011, 59, 3581–3592. [Google Scholar] [CrossRef]
- Khan, A.S.; Liu, J.; Yoon, J.W.; Nambori, R. Strain rate effect of high purity aluminum single crystals: Experiments and simulations. Int. J. Plast. 2015, 67, 39–52. [Google Scholar] [CrossRef]
- Chen, S.D.; Liu, X.H.; Liu, L.Z. Symmetric and Asymmetric Rolling Pure Copper Foil: Crystal Plasticity Finite Element Simulation and Experiments. Acta Metal. 2015, 28, 1024–1033. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, X. Experimental and numerical studies of coupling size effects on material behaviors of polycrystalline metallic foils in microscale plastic deformation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2016, 658, 450–462. [Google Scholar] [CrossRef]
- Fan, W.; Ren, Z.; Hou, J.; Wang, T. Finite element simulation of mesoscale inhomogeneous deformation in 304 stainless steel foil tensile. Mater. Res. Express 2019, 6, 096540. [Google Scholar] [CrossRef]
- Schilde, C.; Sangros, C.; Kwade, A. Effect of Microstructure on Thermal Conduction within Lithium-Ion Battery Electrodes using Discrete Element Method Simulations. Energy Technol. 2016, 4, 1611–1619. [Google Scholar]
- Giménez, C.S.; Finke, B.; Nowak, C.; Schilde, C.; Kwade, A. Structural and mechanical characterization of lithium-ion battery electrodes via DEM simulations. Adv. Powder Technol. 2018, 29, 2312–2321. [Google Scholar] [CrossRef]
- Gimenez, C.S.; Finke, B.; Schilde, C.; Froböse, L.; Kwade, A. Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method. Powder Technol. 2019, 349, 1–11. [Google Scholar] [CrossRef]
- Stershic, A.J.; Simunovic, S.; Nanda, J. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach. J. Power Sources 2015, 297, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Sangrós, G.C.; Schilde, C.; Froböse, L.; Ivanov, S.; Kwade, A. Mechanical, Electrical, and Ionic Behavior of Lithium-Ion Battery Electrodes via Discrete Element Method Simulations. Energy Technol. 2019, 8, 1900180. [Google Scholar] [CrossRef]
- Ge, R.; Cumming, D.J.; Smith, R.M. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions. Powder Technol. 2022, 403, 117366. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Sun, J. Investigation on mechanical and microstructural evolution of lithium-ion battery electrode during the calendering process. Powder Technol. 2022, 409, 117828. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Asaro, R.J.; Needleman, A. Texture development and strain hardening in rate dependent polycrystals. Acta Metall. 1985, 33, 923–953. [Google Scholar] [CrossRef]
- Bassani, J.L.; Wu, T.Y. Latent hardening in single crystals. II. Analytical characterization and predictions. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1991, 435, 21–41. [Google Scholar]
- Aurenhammer, F.; Klein, R. Voronoi Diagrams. In Handbook of Computational Geometry; Elsevier: Amsterdam, The Netherlands, 1991; Volume 3, pp. 220–225. [Google Scholar]
Materials | Description | Values | Units | Source |
---|---|---|---|---|
Active material particles (NCM) | Young’s modulus (NCM) | 1.42 × 1011 | Pa | [30,31] |
Density | 4.75 | g/cm2 | [30] | |
Poisson’s ratio | 0.25 | [30] | ||
Coefficient of static friction | 0.25 | [33] | ||
Coefficient of rolling friction | 0.01 | [33] | ||
Coefficient of restitution | 0.25 | [33] | ||
Conductive carbon black | Young’s modulus(CB) | 4.5 × 10⁸ | Pa | [29] |
Density | 2.25 | g/cm2 | Measured | |
Poisson’s ratio | 0.3 | [29,34] | ||
Coefficient of static friction | 0.25 | [34] | ||
Coefficient of rolling friction | 0.01 | [34] | ||
Coefficient of restitution | 0.25 | [29] | ||
Current collector | Young’s modulus | 6.89 × 1010 | Pa | Measured |
Density | 2.7 | g/cm2 | Measured | |
Poisson’s ratio | 0.25 | Measured | ||
Compression plate | Young’s modulus | 1.82 × 1011 | Pa | Materials Library |
Density | 7.8 | g/cm2 | Materials Library | |
Poisson’s ratio | 0.3 | Materials Library |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Xie, X.; Du, X.; Zuo, Y.; Zhang, Y. Research on Micromechanical Behavior of Current Collector of Lithium-Ion Batteries Battery Cathode during the Calendering Process. Processes 2023, 11, 1800. https://doi.org/10.3390/pr11061800
Yang K, Xie X, Du X, Zuo Y, Zhang Y. Research on Micromechanical Behavior of Current Collector of Lithium-Ion Batteries Battery Cathode during the Calendering Process. Processes. 2023; 11(6):1800. https://doi.org/10.3390/pr11061800
Chicago/Turabian StyleYang, Kaiyue, Xinbing Xie, Xiaozhong Du, Yang Zuo, and Ying Zhang. 2023. "Research on Micromechanical Behavior of Current Collector of Lithium-Ion Batteries Battery Cathode during the Calendering Process" Processes 11, no. 6: 1800. https://doi.org/10.3390/pr11061800
APA StyleYang, K., Xie, X., Du, X., Zuo, Y., & Zhang, Y. (2023). Research on Micromechanical Behavior of Current Collector of Lithium-Ion Batteries Battery Cathode during the Calendering Process. Processes, 11(6), 1800. https://doi.org/10.3390/pr11061800