Numerical Simulation of Optimized Step-Wise Depressurization for Enhanced Natural Gas Hydrate Production in the Nankai Trough of Japan
Abstract
:1. Introduction
2. Numerical Modeling
2.1. Numerical Simulator
2.2. Model Construction and Domain Discretization
2.3. Initial and Boundaries Conditions
3. Direct Depressurization Method
3.1. Model Validation
3.2. Characteristics of Gas and Water Production
3.3. Evolution of the Reservoir Permeability
4. Optimized Step-Wise Depressurization Method
4.1. Comparison of the Production Behaviors with Different Depressurization Gradients
4.2. Comparison of the Production Behaviors with Different Maintenance Times
4.3. Comparison of the Cumulative Gas and Water Production for Each Step-Wise Depressurization Pattern
4.4. Evolution of Reservoir Characteristics Distribution by Step-Wise Depressurization Method
5. Conclusions
- (1)
- The effective permeability for the aqueous phase flow will decrease as the decomposition of gas hydrates, while the pore water flow from other layers will eliminate this effect.
- (2)
- The step-wise depressurization method is effective in mitigating short-term excessive gas and water production. A small depressurization gradient and a long maintenance time for each stage can enhance the mitigation effect.
- (3)
- The stepwise depressurization method can increase the cumulative gas production by up to 10% at maximum. Considering the gas and water production characteristics, as well as the difficulty in implementing the step-wise depressurization, it is recommended to adopt a depressurization gradient of 1 MPa and a maintenance time of 1 day.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Collett, T.S.; Johnson, A.H.; Knapp, C.C. Natural Gas Hydrates: A Review. AAPG Mem. 2009, 89, 146–219. [Google Scholar]
- Sloan, E.D. Fundamental Principles and Applications of Natural Gas Hydrates. Nature 2003, 426, 353–359. [Google Scholar] [CrossRef]
- Boswell, R. Is Gas Hydrate Energy Within Reach? Science 2009, 325, 957–958. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Gao, Y.; Chen, Y.; Sun, B.; Li, S.; Zhao, D. Numerical Investigation on the Long-Term Production Behavior of Horizontal Well at the Gas Hydrate Production Site in South China Sea. Appl. Energy 2022, 311, 118603. [Google Scholar] [CrossRef]
- Lijith, K.P.; Srinivasa Rao, R.; Narain Singh, D. Investigations on the Influence of Wellbore Configuration and Permeability Anisotropy on the Gas Production from a Turbidite Hydrate Reservoir of KG Basin. Fuel 2022, 317, 123562. [Google Scholar] [CrossRef]
- Yang, L.; Guan, D.; Qu, A.; Li, Q.; Ge, Y.; Liang, H.; Dong, H.; Leng, S.; Liu, Y.; Zhang, L.; et al. Thermotactic Habit of Gas Hydrate Growth Enables a Fast Transformation of Melting Ice. Appl. Energy 2023, 331, 120372. [Google Scholar] [CrossRef]
- Collett, T.S. Energy Resource Potential of Natural Gas Hydrates. AAPG Bull. 2002, 86, 1971–1992. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-S.; Xu, C.-G.; Zhang, Y.; Ruan, X.-K.; Li, G.; Wang, Y. Investigation into Gas Production from Natural Gas Hydrate: A Review. Appl. Energy 2016, 172, 286–322. [Google Scholar] [CrossRef] [Green Version]
- Makogon, Y.F.; Holditch, S.A.; Makogon, T.Y. Natural Gas-Hydrates—A Potential Energy Source for the 21st Century. J. Pet. Sci. Eng. 2007, 56, 14–31. [Google Scholar] [CrossRef]
- Gu, Y.; Sun, J.; Qin, F.; Ning, F.; Cao, X.; Liu, T.; Qin, S.; Zhang, L.; Jiang, G. Enhancing Gas Recovery from Natural Gas Hydrate Reservoirs in the Eastern Nankai Trough: Deep Depressurization and Underburden Sealing. Energy 2023, 262, 125510. [Google Scholar] [CrossRef]
- Xue, K.; Liu, Y.; Yu, T.; Yang, L.; Zhao, J.; Song, Y. Numerical Simulation of Gas Hydrate Production in Shenhu Area Using Depressurization: The Effect of Reservoir Permeability Heterogeneity. Energy 2023, 271, 126948. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, C.; Zhao, J.; Zhu, Z.; Liu, W.; Yang, M.; Xue, K. Evaluation of Gas Production from Methane Hydrates Using Depressurization, Thermal Stimulation and Combined Methods. Appl. Energy 2015, 145, 265–277. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, B.; Zhang, L.; Li, W.; Song, Y. Numerical Simulation of CH4 Recovery from Gas Hydrate Using Gaseous CO2 Injected into Porous Media. J. Nat. Gas Sci. Eng. 2021, 95, 104199. [Google Scholar] [CrossRef]
- Jin, G.; Xu, T.; Xin, X.; Wei, M.; Liu, C. Numerical Evaluation of the Methane Production from Unconfined Gas Hydrate-Bearing Sediment by Thermal Stimulation and Depressurization in Shenhu Area, South China Sea. J. Nat. Gas Sci. Eng. 2016, 33, 497–508. [Google Scholar] [CrossRef]
- Yu, T.; Guan, G.; Abudula, A.; Yoshida, A.; Wang, D.; Song, Y. Heat-Assisted Production Strategy for Oceanic Methane Hydrate Development in the Nankai Trough, Japan. J. Pet. Sci. Eng. 2019, 174, 649–662. [Google Scholar] [CrossRef]
- Ke, W.; Chen, D. A Short Review on Natural Gas Hydrate, Kinetic Hydrate Inhibitors and Inhibitor Synergists. Chin. J. Chem. Eng. 2019, 27, 2049–2061. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, X.; Li, Q.; Gao, L.; Wu, F.; Xie, G. Effects of a Polyamine Inhibitor on the Microstructure and Macromechanical Properties of Hydrated Shale. Petroleum 2022, 8, 538–545. [Google Scholar] [CrossRef]
- Kan, J.-Y.; Sun, Y.-F.; Dong, B.-C.; Yuan, Q.; Liu, B.; Sun, C.-Y.; Chen, G.-J. Numerical Simulation of Gas Production from Permafrost Hydrate Deposits Enhanced with CO2/N2 Injection. Energy 2021, 221, 119919. [Google Scholar] [CrossRef]
- Pandey, J.S.; Ouyang, Q.; von Solms, N. New Insights into the Dissociation of Mixed CH4/CO2 Hydrates for CH4 Production and CO2 Storage. Chem. Eng. J. 2022, 427, 131915. [Google Scholar] [CrossRef]
- Moridis, G.J.; Silpngarmlert, S.; Reagan, M.T.; Collett, T.; Zhang, K. Gas Production from a Cold, Stratigraphically-Bounded Gas Hydrate Deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications of Uncertainties. Mar. Pet. Geol. 2011, 28, 517–534. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.-S.; Li, G.; Zhang, Y.; Li, B.; Feng, J.-C. A Three-Dimensional Study on Methane Hydrate Decomposition with Different Methods Using Five-Spot Well. Appl. Energy 2013, 112, 83–92. [Google Scholar] [CrossRef]
- Yu, T.; Guan, G.; Abudula, A. Production Performance and Numerical Investigation of the 2017 Offshore Methane Hydrate Production Test in the Nankai Trough of Japan. Appl. Energy 2019, 251, 113338. [Google Scholar] [CrossRef]
- Konno, Y.; Fujii, T.; Sato, A.; Akamine, K.; Naiki, M.; Masuda, Y.; Yamamoto, K.; Nagao, J. Key Findings of the World’s First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production. Energy Fuels 2017, 31, 2607–2616. [Google Scholar] [CrossRef]
- Yamamoto, K.; Terao, Y.; Fujii, T.; Ikawa, T.; Seki, M.; Matsuzawa, M.; Kanno, T. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough. In Offshore Technology Conference. Offshore Technology Conference. 2014. Available online: https://onepetro.org/OTCONF/proceedings-abstract/14OTC/3-14OTC/D031S034R004/172106 (accessed on 11 June 2023).
- Ye, J.; Qin, X.; Xie, W.; Lu, H.; Ma, B.; Qiu, H.; Liang, J.; Lu, J.; Kuang, Z.; Lu, C.; et al. The Second Natural Gas Hydrate Production Test in the South China Sea. China Geol. 2020, 3, 197–209. [Google Scholar] [CrossRef]
- Li, J.; Ye, J.; Qin, X.; Qiu, H.; Wu, N.; Lu, H.; Xie, W.; Lu, J.; Peng, F.; Xu, Z.; et al. The First Offshore Natural Gas Hydrate Production Test in South China Sea. China Geol. 2018, 1, 5–16. [Google Scholar] [CrossRef]
- Moridis, G.J.; Reagan, M.T. Estimating the Upper Limit of Gas Production from Class 2 Hydrate Accumulations in the Permafrost: 1. Concepts, System Description, and the Production Base Case. J. Pet. Sci. Eng. 2011, 76, 194–204. [Google Scholar] [CrossRef]
- Heeschen, K.U.; Abendroth, S.; Priegnitz, M.; Spangenberg, E.; Thaler, J.; Schicks, J.M. Gas Production from Methane Hydrate: A Laboratory Simulation of the Multistage Depressurization Test in Mallik, Northwest Territories, Canada. Energy Fuels 2016, 30, 6210–6219. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, J.; Gao, Y.; Ma, Z.; Lv, X.; Song, Y. Dissociation Characteristics of Methane Hydrates in South China Sea Sediments by Depressurization. Appl. Energy 2019, 243, 266–273. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Guo, X.; Wei, R.; Yu, T.; Xu, L.; Sun, L.; Yang, L. Gas Production Behavior from Hydrate-Bearing Fine Natural Sediments through Optimized Step-Wise Depressurization. Appl. Energy 2020, 260, 114275. [Google Scholar] [CrossRef]
- Moridis, G.J.; Kowalsky, M.B.; Pruess, K. User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2012; p. 284. [Google Scholar]
- Zhu, H.; Xu, T.; Yuan, Y.; Xia, Y.; Xin, X. Numerical Investigation of the Natural Gas Hydrate Production Tests in the Nankai Trough by Incorporating Sand Migration. Appl. Energy 2020, 275, 115384. [Google Scholar] [CrossRef]
- Sun, J.; Ning, F.; Zhang, L.; Liu, T.; Peng, L.; Liu, Z.; Li, C.; Jiang, G. Numerical Simulation on Gas Production from Hydrate Reservoir at the 1st Offshore Test Site in the Eastern Nankai Trough. J. Nat. Gas Sci. Eng. 2016, 30, 64–76. [Google Scholar] [CrossRef]
- Buković, D.; Carek, V.; Durek, D.; Kuna, T.; Keros, J. Measurement of Magnetic Field in Dentistry. Coll. Antropol. 2000, 24 (Suppl. S1), 85–89. [Google Scholar] [PubMed]
- Song, H.B.; Jiang, W.W.; Zhang, W.S.; Hao, T. Progress on Marine Geophysical Studies of Gas Hydrates. Prog. Geophys. 2002, 17, 224–229. [Google Scholar]
- Yu, T.; Guan, G.; Abudula, A.; Yoshida, A.; Wang, D.; Song, Y. Application of Horizontal Wells to the Oceanic Methane Hydrate Production in the Nankai Trough, Japan. J. Nat. Gas Sci. Eng. 2019, 62, 113–131. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Suzuki, A.; Kogawa, T.; Okajima, J.; Komiya, A.; Maruyama, S. Numerical Analysis of Gas Production from Layered Methane Hydrate Reservoirs by Depressurization. Energy 2019, 166, 1106–1119. [Google Scholar] [CrossRef]
- A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Available online: https://acsess.onlinelibrary.wiley.com/doi/epdf/10.2136/sssaj1980.03615995004400050002x (accessed on 23 March 2022).
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Feng, Y.; Kogawa, T.; Okajima, J.; Komiya, A.; Maruyama, S. Construction and Simulation of Reservoir Scale Layered Model for Production and Utilization of Methane Hydrate: The Case of Nankai Trough Japan. Energy 2018, 143, 128–140. [Google Scholar] [CrossRef]
- Mao, P.; Sun, J.; Ning, F.; Chen, L.; Wan, Y.; Hu, G.; Wu, N. Numerical Simulation on Gas Production from Inclined Layered Methane Hydrate Reservoirs in the Nankai Trough: A Case Study. Energy Rep. 2021, 7, 8608–8623. [Google Scholar] [CrossRef]
- Merey, S.; Chen, L. Numerical Comparison of Different Well Configurations in the Conditions of the 2020-Gas Hydrate Production Test in the Shenhu Area. Upstream Oil Gas Technol. 2022, 9, 100073. [Google Scholar] [CrossRef]
- Yu, T.; Guan, G.; Abudula, A.; Wang, D. 3D Visualization of Methane Hydrate Production Behaviors under Actual Wellbore Conditions. J. Pet. Sci. Eng. 2020, 185, 106645. [Google Scholar] [CrossRef]
- Yu, T.; Chen, B.; Jiang, L.; Zhang, L.; Yang, L.; Yang, M.; Song, Y.; Abudula, A. Feasibility Evaluation of a New Approach of Seawater Flooding for Offshore Natural Gas Hydrate Exploitation. Energy Fuels 2023, 37, 4349–4364. [Google Scholar] [CrossRef]
- Wei, R.; Xia, Y.; Wang, Z.; Li, Q.; Lv, X.; Leng, S.; Zhang, L.; Zhang, Y.; Xiao, B.; Yang, S.; et al. Long-Term Numerical Simulation of a Joint Production of Gas Hydrate and Underlying Shallow Gas through Dual Horizontal Wells in the South China Sea. Appl. Energy 2022, 320, 119235. [Google Scholar] [CrossRef]
- Cao, X.; Sun, J.; Ning, F.; Zhang, H.; Wu, N.; Yu, Y. Numerical Analysis on Gas Production from Heterogeneous Hydrate System in Shenhu Area by Depressurizing: Effects of Hydrate-Free Interlayers. J. Nat. Gas Sci. Eng. 2022, 101, 104504. [Google Scholar] [CrossRef]
- Yarveicy, H.; Ghiasi, M.M.; Mohammadi, A.H. Determination of the Gas Hydrate Formation Limits to Isenthalpic Joule–Thomson Expansions. Chem. Eng. Res. Des. 2018, 132, 208–214. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Merey, S.; Lijith, K.P.; Singh, D.N.; Komiya, A.; Maruyama, S. Numerical Modelling of Gas Production from the Oceanic Gas Hydrate Reservoirs in Eastern Nankai Trough (AT1 Site), Japan. Environ. Geotech. 2020, 10, 176–185. [Google Scholar] [CrossRef]
Layer | Parameter | Value and Unit |
---|---|---|
OB | Thickness | 30 m |
Porosity | 0.40 | |
Intrinsic permeability | 0.01 D | |
HBL1 | Thickness | 20 m |
Porosity | 0.40 | |
Intrinsic permeability | 0.30 D (horizontal), 0.20 D (vertical) | |
Initial hydrate saturation | 0.50 | |
HBL2 | Thickness | 8 m |
Porosity | 0.40 | |
Intrinsic permeability | 0.05 D (horizontal), 0.05 D (vertical) | |
Initial hydrate saturation | 0.35 | |
HBL3 | Thickness | 32 m |
Porosity | 0.40 | |
Intrinsic permeability | 0.40 D (horizontal), 0.30 D (vertical) | |
Initial hydrate saturation | 0.60 | |
UB | Thickness | 30 m |
Porosity | 0.40 | |
Intrinsic permeability | 1.00 D |
Parameter | Value and Unit |
---|---|
Seawater density () | 1022 kg/m3 |
Grain density | 2650 kg/m3 |
Grain specific heat | 792 J/(kg·°C) |
Wet thermal conductivity (sand) | 2.917 W/(m·°C) |
Wet thermal conductivity (silt) | 1.7 W/(m·°C) |
Dry thermal conductivity | 1.0 W/(m·°C) |
Capillary pressure model [38] | , |
[initial capillary pressure (Pa)] | 104 Pa (sand), 105 Pa (silt) |
[exponent in the capillary pressure model] | 0.45 (sand), 0.15 (silt) |
[maximum water saturation] | 1.00 |
Relative permeability model [39] | , |
[irreducible water saturation] | 0.25 (sand), 0.55 (silt) |
[residual gas saturation] | 0.01 (sand), 0.05 (silt) |
[exponent in the relative permeability model for the aqueous phase] | 3.5 (sand), 5.0 (silt) |
[exponent in the relative permeability model for the gas phase] | 0.01 (sand), 0.05 (silt) |
[standard atmospheric pressure (MPa)] | 0.101325 MPa |
[gravitational acceleration (m/s2)] | 9.8 m/s2 |
Case | Depressurization Step | Depressurization Process | Maintenance Time (h) | Depressurization Time (d) |
---|---|---|---|---|
Case 0 (Reference case) | 1 | 13.5 → 4.5 | None | None |
Case 1 | 3 | 13.5 → 10 → 7 → 4.5 | 24 | 3 |
Case 2 | 4 | 13.5 → 10 → 8 → 6 → 4.5 | 24 | 4 |
Case 3 | 7 | 13.5 → 10 → 9 → 8 → 7 → 6 → 5 → 4.5 | 24 | 7 |
Case 4 | 3 | 13.5 → 10 → 7 → 4.5 | 12 | 1.5 |
Case 5 | 4 | 13.5 → 10 → 8 → 6 → 4.5 | 12 | 2 |
Case 6 | 7 | 13.5 → 10 → 9 → 8 → 7 → 6 → 5 → 4.5 | 12 | 3.5 |
Case 7 | 3 | 13.5 → 10 → 7 → 4.5 | 6 | 0.75 |
Case 8 | 4 | 13.5 → 10 → 8 → 6 → 4.5 | 6 | 1 |
Case 9 | 7 | 13.5 → 10 → 9 → 8 → 7 → 6 → 5 → 4.5 | 6 | 1.75 |
Group | Cases | Objectives |
---|---|---|
Group A | Cases 0–3 | Depressurization gradients |
Group B | Cases 4–6 | |
Group C | Cases 7–9 | |
Group D | Cases 1, 4, 7 | Maintenance time |
Group E | Cases 2, 5, 8 | |
Group F | Cases 3, 6, 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, K.; Liu, Y.; Yu, T.; Lv, J. Numerical Simulation of Optimized Step-Wise Depressurization for Enhanced Natural Gas Hydrate Production in the Nankai Trough of Japan. Processes 2023, 11, 1812. https://doi.org/10.3390/pr11061812
Xue K, Liu Y, Yu T, Lv J. Numerical Simulation of Optimized Step-Wise Depressurization for Enhanced Natural Gas Hydrate Production in the Nankai Trough of Japan. Processes. 2023; 11(6):1812. https://doi.org/10.3390/pr11061812
Chicago/Turabian StyleXue, Kunpeng, Yu Liu, Tao Yu, and Junchen Lv. 2023. "Numerical Simulation of Optimized Step-Wise Depressurization for Enhanced Natural Gas Hydrate Production in the Nankai Trough of Japan" Processes 11, no. 6: 1812. https://doi.org/10.3390/pr11061812
APA StyleXue, K., Liu, Y., Yu, T., & Lv, J. (2023). Numerical Simulation of Optimized Step-Wise Depressurization for Enhanced Natural Gas Hydrate Production in the Nankai Trough of Japan. Processes, 11(6), 1812. https://doi.org/10.3390/pr11061812