Novel Copper Oxide Phyto-Nanocatalyst Utilized for the Synthesis of Sustainable Biodiesel from Citrullus colocynthis Seed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compounds and Reagents
2.2. Collection of Non-Edible Oil Seeds
2.3. Chemical Oil Extraction
2.4. Mechanical Oil Extraction
2.5. Oil Filtration
2.6. Free Fatty Acid (FFA) Content Determination
2.7. Preparation of Phyto-Nanocatalyst Using Oil Cake Waste (OCW) Extract
2.8. Synthesis of Biodiesel from Non-Edible Seed Oil via a Phyto-Nanocatalyst
2.9. Phyto-Nanocatalyst Characterization
2.9.1. FT-IR Spectroscopy (FT-IR)
2.9.2. Analysis of X-ray Diffraction (XRD)
2.9.3. Scanning Electron Microscopy (SEM)
2.9.4. Energy-Dispersive X-ray Analysis (EDX)
2.9.5. Biodiesel Characterization
(a) GC-MS Analysis
(b) FT-IR Spectroscopy
2.10. Fuel Properties of Synthesized Biodiesel
2.11. Experimental Design (Response Surface Methodology)
3. Results and Discussion
3.1. Seed Characterization
3.2. Characterization of Green Nanocatalysts
3.2.1. (a) Characterization of Green Copper Oxide Nanocatalyst
3.2.2. (b) Scanning Electron Microscopy (SEM) of CuNPs
3.2.3. (c) FT-IR Spectroscopy of CuO NPs
3.2.4. (d) Energy-Dispersive X-rays (EDX)
3.3. Biodiesel Synthesis and Characterization
3.3.1. (a) FT-IR Analysis of CTSO and CTBD
3.3.2. (b) GC-MS Analysis of CTBD
3.4. Physico-Chemical Properties of C. colocynthis Seed Oil (CTSO)
3.5. Transesterification Optimization of Operational Factors Using the Response Surface Methodology (RSM)
3.6. Parametric Characterization of Transesterification Process for Biodiesel Yield
3.6.1. Collective Impact on Biodiesel Yields of Oil: Methanol and Catalytic Changes
3.6.2. Collective Effects on Yields of Biodiesel from Oil to Methanol and Reaction Time
3.6.3. Collective Effects of Methanol Oil: Reaction Temperature
3.6.4. Collective Effects on Biodiesel Production of Reaction Time and Catalyst Loads
3.6.5. Collective Effect on Biodiesel Output of the Reaction Temperature and Catalyst Loads
3.6.6. Effect of Reaction Time and Temperature on Biodiesel Yields
3.7. C. colocynthis (CTBD) and the Resulting Fuel Properties Were Compared to International Standards
3.7.1. Color
3.7.2. Density (kg/L)
3.7.3. Acid Number (KOH/g)
3.7.4. Flash Point (°C)
3.7.5. Kinematic Viscosity (°C)
3.7.6. Pour Point and Cloud Point (°C)
3.7.7. Sulfur Content
3.8. Catalyst Reusability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ameen, M.; Zafar, M.; Ahmad, M.; Ramadan, M.F.; Eid, H.F.; Makhkamov, T.; Yuldashev, A.; Mamarakhimov, O.; Nizomova, M.; Isaifan, R.J. Assessing the Bioenergy Potential of Novel Non-Edible Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization. Agronomy 2023, 13, 735. [Google Scholar] [CrossRef]
- Akhtar, M.T.; Ahmad, M.; Ramadan, M.F.; Makhkamov, T.; Yuldashev, A.; Mamarakhimov, O.; Munir, M.; Asma, M.; Zafar, M.; Majeed, S. Sustainable production of biodiesel from novel non-edible oil seeds (Descurainia sophia L.) via green nano CeO2 catalyst. Energies 2023, 16, 1534. [Google Scholar] [CrossRef]
- Sankaranarayanan, A.C.; Studer, C.; Baraniuk, R.G. CS-MUVI: Video compressive sensing for spatial-multiplexing cameras. In Proceedings of 2012 IEEE International Conference on Computational Photography (ICCP), Seattle, WA, USA, 28–29 April 2012; pp. 1–10. [Google Scholar]
- Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking named content. In Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 1–4 December 2009; pp. 1–12. [Google Scholar]
- Correa, D.F.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Towards the implementation of sustainable biofuel production systems. Renew. Sustain. Energy Rev. 2019, 107, 250–263. [Google Scholar] [CrossRef]
- Hanssen, S.V.; Steinmann, Z.J.; Daioglou, V.; Čengić, M.; Van Vuuren, D.P.; Huijbregts, M.A. Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity. GCB Bioenergy 2022, 14, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Goh, B.H.H.; Chong, C.T.; Ge, Y.; Ong, H.C.; Ng, J.-H.; Tian, B.; Ashokkumar, V.; Lim, S.; Seljak, T.; Józsa, V. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers. Manag. 2020, 223, 113296. [Google Scholar] [CrossRef]
- Kaur, M.; Ali, A. Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renew. Energy 2011, 36, 2866–2871. [Google Scholar] [CrossRef]
- Maddikeri, G.L.; Pandit, A.B.; Gogate, P.R. Intensification approaches for biodiesel synthesis from waste cooking oil: A review. Ind. Eng. Chem. Res. 2012, 51, 14610–14628. [Google Scholar] [CrossRef]
- Sanjid, A.; Masjuki, H.; Kalam, M.; Rahman, S.A.; Abedin, M.; Palash, S. Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine. Renew. Sustain. Energy Rev. 2013, 27, 664–682. [Google Scholar] [CrossRef]
- Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.; Madzimbamuto, T.; Ikhu-Omoregbe, D. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 2014, 61, 276–297. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ho, S.-H. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. Chemosphere 2022, 291, 132863. [Google Scholar] [CrossRef]
- Atabani, A.; Mahlia, T.; Masjuki, H.; Badruddin, I.A.; Yussof, H.W.; Chong, W.; Lee, K.T. A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy 2013, 58, 296–304. [Google Scholar] [CrossRef]
- Bokhari, A.; Chuah, L.F.; Yusup, S.; Klemeš, J.J.; Akbar, M.M.; Kamil, R.N.M. Cleaner production of rubber seed oil methyl ester using a hydrodynamic cavitation: Optimisation and parametric study. J. Clean. Prod. 2016, 136, 31–41. [Google Scholar] [CrossRef]
- Kalita, P.; Basumatary, B.; Saikia, P.; Das, B.; Basumatary, S. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus 2022, 6, 100087. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Li, Z.; Song, Y.; Zhang, Y.; Song, H. Methane-assisted waste cooking oil conversion for renewable fuel production. Fuel 2022, 311, 122613. [Google Scholar] [CrossRef]
- Alsaiari, M.; Ahmad, M.; Munir, M.; Zafar, M.; Sultana, S.; Dawood, S.; Almohana, A.I.; Hassan, M.H.A.-M.; Alharbi, A.F.; Ahmad, Z. Efficient application of newly synthesized green Bi2O3 nanoparticles for sustainable biodiesel production via membrane reactor. Chemosphere 2023, 310, 136838. [Google Scholar]
- Huang, J.; Wang, J.; Huang, Z.; Liu, T.; Li, H. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment. Bioresour. Technol. 2023, 369, 128390. [Google Scholar] [CrossRef]
- Ameen, M.; Ahmad, M.; Zafar, M.; Munir, M.; Abbas, M.M.; Sultana, S.; Elkhatib, S.E.; Soudagar, M.E.M.; Kalam, M. Prospects of catalysis for process sustainability of eco-green biodiesel synthesis via transesterification: A state-of-the-art review. Sustainability 2022, 14, 7032. [Google Scholar] [CrossRef]
- Maddikeri, G.L.; Gogate, P.R.; Pandit, A.B. Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel 2014, 137, 285–292. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, N.; Singh, V.P.; Mishra, S.; Sharma, N.K.; Bajaj, M.; Khan, T.Y. Transesterification of Algae Oil and Little Amount of Waste Cooking Oil Blend at Low Temperature in the Presence of NaOH. Energies 2023, 16, 1293. [Google Scholar] [CrossRef]
- Catarino, M.; Martins, S.; Dias, A.P.S.; Pereira, M.F.C.; Gomes, J. Calcium diglyceroxide as a catalyst for biodiesel production. J. Environ. Chem. Eng. 2019, 7, 103099. [Google Scholar] [CrossRef]
- Maleki, B.; Talesh, S.A.; Mansouri, M. Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: A review study. Mater. Today Sustain. 2022, 18, 100157. [Google Scholar] [CrossRef]
- Nawaz, S.; Ahmad, M.; Asif, S.; Klemeš, J.J.; Mubashir, M.; Munir, M.; Zafar, M.; Bokhari, A.; Mukhtar, A.; Saqib, S. Phyllosilicate derived catalysts for efficient conversion of lignocellulosic derived biomass to biodiesel: A review. Bioresour. Technol. 2022, 343, 126068. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.; Ahmad, M.; Munir, M.; Sultana, S.; Zafar, M.; Dawood, S.; Alghamdi, A.M.; Asif, S.; Bokhari, A.; Mubashir, M. Assessing the potential of green CdO2 nano-catalyst for the synthesis of biodiesel using non-edible seed oil of Malabar Ebony. Fuel 2023, 333, 126492. [Google Scholar] [CrossRef]
- Ngige, G.A.; Ovuoraye, P.E.; Igwegbe, C.A.; Fetahi, E.; Okeke, J.A.; Yakubu, A.D.; Onyechi, P.C. RSM optimization and yield prediction for biodiesel produced from alkali-catalytic transesterification of pawpaw seed extract: Thermodynamics, kinetics, and Multiple Linear Regression analysis. Digit. Chem. Eng. 2023, 6, 100066. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Dalai, A.K. Waste cooking oil an economical source for biodiesel: A review. Ind. Eng. Chem. Res. 2006, 45, 2901–2913. [Google Scholar] [CrossRef]
- Leung, D.; Guo, Y. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol. 2006, 87, 883–890. [Google Scholar] [CrossRef]
- Orege, J.I.; Oderinde, O.; Kifle, G.A.; Ibikunle, A.A.; Raheem, S.A.; Ejeromedoghene, O.; Okeke, E.S.; Olukowi, O.M.; Orege, O.B.; Fagbohun, E.O. Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Convers. Manag. 2022, 258, 115406. [Google Scholar] [CrossRef]
- Mardiana, S.; Azhari, N.J.; Ilmi, T.; Kadja, G.T. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 2022, 309, 122119. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, H.; Yang, S. Electrovalent bifunctional acid enables heterogeneously catalytic production of biodiesel by (trans) esterification of non-edible oils. Fuel 2022, 310, 122273. [Google Scholar] [CrossRef]
- Nabgan, W.; Nabgan, B.; Ikram, M.; Jadhav, A.H.; Ali, M.W.; Ul-Hamid, A.; Nam, H.; Lakshminarayana, P.; Bahari, M.B.; Khusnun, N.F. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum. Chemosphere 2022, 290, 133296. [Google Scholar] [CrossRef]
- Okechukwu, O.D.; Joseph, E.; Nonso, U.C.; Kenechi, N.-O. Improving heterogeneous catalysis for biodiesel production process. Clean. Chem. Eng. 2022, 3, 100038. [Google Scholar] [CrossRef]
- Sharma, T.; Velmurugan, N.; Patel, P.; Chon, B.; Sangwai, J. Use of oil-in-water pickering emulsion stabilized by nanoparticles in combination with polymer flood for enhanced oil recovery. Pet. Sci. Technol. 2015, 33, 1595–1604. [Google Scholar] [CrossRef]
- Santos, S.; Puna, J.; Gomes, J. A Brief Review of the Supercritical Antisolvent (SAS) Technique for the Preparation of Nanocatalysts to Be Used in Biodiesel Production. Energies 2022, 15, 9355. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, L.; Esmaeili, H. A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass Bioenergy 2022, 158, 106356. [Google Scholar] [CrossRef]
- Topare, N.S.; Gujarathi, V.S.; Bhattacharya, A.A.; Bhoyar, V.M.; Shastri, T.J.; Manewal, S.P.; Gomkar, C.S.; Khedkar, S.V.; Khan, A.; Asiri, A.M. A review on application of nano-catalysts for production of biodiesel using different feedstocks. Mater. Today: Proc. 2023, 72, 324–335. [Google Scholar] [CrossRef]
- Ahmad, M.; Elnaggar, A.Y.; Teong, L.K.; Sultana, S.; Zafar, M.; Munir, M.; Hussein, E.E.; Abidin, S.Z.U. Sustainable and eco-friendly synthesis of biodiesel from novel and non-edible seed oil of Monotheca buxifolia using green nano-catalyst of calcium oxide. Energy Convers. Manag. X 2022, 13, 100142. [Google Scholar]
- Vignesh, P.; Jayaseelan, V.; Pugazhendiran, P.; Prakash, M.S.; Sudhakar, K. Nature-inspired nano-additives for Biofuel application–A Review. Chem. Eng. J. Adv. 2022, 12, 100360. [Google Scholar] [CrossRef]
- Jabeen, M.; Munir, M.; Abbas, M.M.; Ahmad, M.; Waseem, A.; Saeed, M.; Kalam, M.A.; Zafar, M.; Sultana, S.; Mohamed, A. Sustainable production of biodiesel from novel and non-edible ailanthus altissima (Mill.) seed oil from green and recyclable potassium hydroxide activated ailanthus cake and cadmium sulfide catalyst. Sustainability 2022, 14, 10962. [Google Scholar] [CrossRef]
- Foidl, N.; Foidl, G.; Sanchez, M.; Mittelbach, M.; Hackel, S. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresource technology 1996, 58, 77–82. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Ullah, K.; Jan, H.A.; Ahmad, M.; Ullah, A. Synthesis and structural characterization of biofuel from Cocklebur sp., using zinc oxide nano-particle: A novel energy crop for bioenergy industry. Front. Bioeng. Biotechnol. 2020, 8, 756. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, P.; Gurunathan, B.; Pandian, S.; Karuppasamy, I.; Ramakrishnan, G.; Sahadevan, R. Efficient utilization of seed biomass and its by-product for the biodiesel production. In Biofuels and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 483–493. [Google Scholar]
- Ameen, M.; Zafar, M.; Ramadan, M.F.; Ahmad, M.; Makhkamov, T.; Bokhari, A.; Mubashir, M.; Chuah, L.F.; Show, P.L. Conversion of novel non-edible Bischofia javanica seed oil into methyl ester via recyclable zirconia-based phyto-nanocatalyst: A circular bioeconomy approach for eco-sustenance. Environ. Technol. Innov. 2023, 30, 103101. [Google Scholar] [CrossRef]
- Asemani, M.; Anarjan, N. Green synthesis of copper oxide nanoparticles using Juglans regia leaf extract and assessment of their physico-chemical and biological properties. Green Process. Synth. 2019, 8, 557–567. [Google Scholar] [CrossRef]
- Suresh, T.; Sivarajasekar, N.; Balasubramani, K. Enhanced ultrasonic assisted biodiesel production from meat industry waste (pig tallow) using green copper oxide nanocatalyst: Comparison of response surface and neural network modelling. Renew. Energy 2021, 164, 897–907. [Google Scholar] [CrossRef]
- Narasaiah, P.; Mandal, B.K.; Sarada, N. Biosynthesis of copper oxide nanoparticles from Drypetes sepiaria leaf extract and their catalytic activity to dye degradation. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 022012. [Google Scholar] [CrossRef]
- Raul, P.K.; Senapati, S.; Sahoo, A.K.; Umlong, I.M.; Devi, R.R.; Thakur, A.J.; Veer, V. CuO nanorods: A potential and efficient adsorbent in water purification. Rsc Adv. 2014, 4, 40580–40587. [Google Scholar] [CrossRef]
- Yedurkar, S.; Maurya, C.; Mahanwar, P. Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—A green approach. Open J. Synth. Theory Appl. 2016, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mahamuni, N.N.; Adewuyi, Y.G. Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel−biodiesel blends, and blend adulteration with soy oil. Energy Fuels 2009, 23, 3773–3782. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Ali, M.; Baroutian, S.; Saleem, M. Techno-economic comparison between B10 of Eruca sativa L. and other indigenous seed oils in Pakistan. Process Saf. Environ. Prot. 2011, 89, 165–171. [Google Scholar] [CrossRef]
- Qavami, N.; Naghdi, B.H.; Labbafi, M.; Mehrafarin, A. A review on pharmacological, cultivation and biotechnology aspects of milk thistle (Silybum marianum (L.) Gaertn.). J. Med. Plants 2013, 12, 19–37. [Google Scholar]
- Dhar, A.; Kevin, R.; Agarwal, A.K. Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Process. Technol. 2012, 97, 118–129. [Google Scholar] [CrossRef]
- Naik, M.; Meher, L.; Naik, S.; Das, L. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass Bioenergy 2008, 32, 354–357. [Google Scholar] [CrossRef]
- Sarve, A.; Sonawane, S.S.; Varma, M.N. Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: Comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN). Ultrason. Sonochem. 2015, 26, 218–228. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Al-Mater, A.; Sweis, F.; Rawajfeh, K. Assessment of the status and outlook of biomass energy in Jordan. Energy Convers. Manag. 2014, 77, 183–192. [Google Scholar] [CrossRef]
- Hasni, K.; Ilham, Z.; Dharma, S.; Varman, M. Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energy Convers. Manag. 2017, 149, 392–400. [Google Scholar] [CrossRef]
S. No. | Property | CTSO |
---|---|---|
1. | Acid Strength mg KOH/g | 0.110 |
2. | Saponification Number (mg KOH/g) | 118.15 |
3. | Iodine Strength (g) | 60.45 |
4. | FFA Concentration (%) w/w | 1.68 |
5. | Percentage of oil (%) | 29 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Response 1 | |
---|---|---|---|---|---|
Run | A: Alcohol-to-Oil Molar Ratio | B: Catalyst Loading | C: Reaction Time | D: Temperature | Yield |
wt% | Min | °C | % | ||
1 | 3.1 | 0.48 | 180 | 120 | 60 |
2 | 8.1 | 0.365 | 60 | 85 | 70 |
3 | 8.1 | 0.365 | 120 | 85 | 85 |
4 | 3.1 | 0.25 | 60 | 50 | 65 |
5 | 14.1 | 0.25 | 60 | 120 | 68 |
6 | 14.1 | 0.25 | 60 | 50 | 62 |
7 | 8.1 | 0.25 | 120 | 85 | 95 |
8 | 8.1 | 0.365 | 120 | 120 | 70 |
9 | 8.1 | 0.365 | 180 | 85 | 88 |
10 | 14.1 | 0.48 | 180 | 120 | 67 |
11 | 8.1 | 0.48 | 120 | 85 | 80 |
12 | 14.1 | 0.48 | 180 | 50 | 77 |
13 | 14.1 | 0.48 | 60 | 50 | 62 |
14 | 8.1 | 0.365 | 120 | 85 | 85 |
15 | 8.1 | 0.365 | 120 | 50 | 55 |
16 | 3.1 | 0.25 | 180 | 120 | 58 |
17 | 3.1 | 0.25 | 180 | 50 | 60 |
18 | 3.1 | 0.25 | 60 | 120 | 58 |
19 | 3.1 | 0.48 | 60 | 50 | 50 |
20 | 3.1 | 0.48 | 180 | 50 | 54 |
21 | 14.1 | 0.25 | 180 | 120 | 79 |
22 | 14.1 | 0.48 | 60 | 120 | 70 |
23 | 8.1 | 0.365 | 120 | 85 | 87 |
24 | 8.1 | 0.48 | 120 | 85 | 70 |
25 | 14.1 | 0.365 | 120 | 85 | 68 |
26 | 3.1 | 0.48 | 60 | 120 | 60 |
27 | 14.1 | 0.25 | 180 | 50 | 57 |
28 | 8.1 | 0.365 | 120 | 85 | 83 |
29 | 3.1 | 0.365 | 120 | 85 | 54 |
30 | 8.1 | 0.365 | 120 | 85 | 86 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 3465.29 | 14 | 247.52 | 3.98 | 0.0059 | significant |
A-Alcohol-to-oil molar ratio | 460.06 | 1 | 460.06 | 7.40 | 0.0158 | |
B-Catalyst loading | 26.11 | 1 | 26.11 | 0.4202 | 0.5266 | |
C-Reaction time | 68.83 | 1 | 68.83 | 1.11 | 0.3092 | |
D-Temperature | 129.08 | 1 | 129.08 | 2.08 | 0.1700 | |
AB | 49.45 | 1 | 49.45 | 0.7958 | 0.3864 | |
AC | 19.60 | 1 | 19.60 | 0.3154 | 0.5827 | |
AD | 20.50 | 1 | 20.50 | 0.3300 | 0.5742 | |
BC | 14.06 | 1 | 14.06 | 0.2263 | 0.6411 | |
BD | 1.56 | 1 | 1.56 | 0.0251 | 0.8761 | |
CD | 0.0625 | 1 | 0.0625 | 0.0010 | 0.9751 | |
A2 | 683.27 | 1 | 683.27 | 11.00 | 0.0047 | |
B2 | 297.22 | 1 | 297.22 | 4.78 | 0.0450 | |
C2 | 12.66 | 1 | 12.66 | 0.2037 | 0.6582 | |
D2 | 529.04 | 1 | 529.04 | 8.51 | 0.0106 | |
Residual | 932.08 | 15 | 62.14 | |||
Lack of Fit | 730.75 | 10 | 73.07 | 1.81 | 0.2650 | |
Pure Error | 201.33 | 5 | 40.27 | |||
Cor Total | 4397.37 | 29 | ||||
Standard deviation | 7.88 | Adjusted R2 | 0.5902 | |||
Mean | 69.43 | Predicted R2 | −0.0702 | |||
Co-efficient of variation | 11.35% | Adequate precision | 7.2360 | |||
R2 | 0.7880 |
Fuel Properties | Testing Method | ALM-B100 (Present Study) | ASTM Standards (D6751) | EN-12214 | HSD ASTM D-951 | China GB/T 20828-2007 |
---|---|---|---|---|---|---|
Color | Visual | 2.5 | 2 | - | 2.0 | - |
Flash point °C (PMCC) | ASTM D-93 | 73.5 | >90 | >120 | 60–80 | ≥130 |
Density @ 15 °C Kg/L | ASTM D-1298 | 0.810 | <120 | <120 | 0.8343 | - |
K. Viscosity @ 40 °C c ST | ASTM D-445 | 4.23 | 1.9 to 6.0 | 3.4–5.0 | 4.223 | - |
Pour point °C | ASTM D-97 | −8 | −15 to −16 | - | - | - |
Cloud point °C | ASTM D-2500 | −4 | −3 to 12 | - | - | - |
Sulfur wt% | ASTM D-4294 | 0.0000 | <0.05 | 0.020 | 0.05 | ≤0.05 |
Total Acid No. mg KOH/g | ASTM D-974 | 0.110 | <0.5 | <0.5 | 0.8 | ≤0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, A.; Ahmad, M.; Zafar, M.; Gaafar, A.-R.Z.; Hodhod, M.S.; Sultana, S.; Athar, M.; Ozdemir, F.A.; Makhkamov, T.; Yuldashev, A.; et al. Novel Copper Oxide Phyto-Nanocatalyst Utilized for the Synthesis of Sustainable Biodiesel from Citrullus colocynthis Seed Oil. Processes 2023, 11, 1857. https://doi.org/10.3390/pr11061857
Aziz A, Ahmad M, Zafar M, Gaafar A-RZ, Hodhod MS, Sultana S, Athar M, Ozdemir FA, Makhkamov T, Yuldashev A, et al. Novel Copper Oxide Phyto-Nanocatalyst Utilized for the Synthesis of Sustainable Biodiesel from Citrullus colocynthis Seed Oil. Processes. 2023; 11(6):1857. https://doi.org/10.3390/pr11061857
Chicago/Turabian StyleAziz, Aqsa, Mushtaq Ahmad, Muhammad Zafar, Abdel-Rhman Z. Gaafar, Mohamed S. Hodhod, Shazia Sultana, Mohammad Athar, Fethi Ahmet Ozdemir, Trobjon Makhkamov, Akramjon Yuldashev, and et al. 2023. "Novel Copper Oxide Phyto-Nanocatalyst Utilized for the Synthesis of Sustainable Biodiesel from Citrullus colocynthis Seed Oil" Processes 11, no. 6: 1857. https://doi.org/10.3390/pr11061857
APA StyleAziz, A., Ahmad, M., Zafar, M., Gaafar, A. -R. Z., Hodhod, M. S., Sultana, S., Athar, M., Ozdemir, F. A., Makhkamov, T., Yuldashev, A., Mamarakhimov, O., Nizomova, M., Majeed, S., & Chaudhay, B. (2023). Novel Copper Oxide Phyto-Nanocatalyst Utilized for the Synthesis of Sustainable Biodiesel from Citrullus colocynthis Seed Oil. Processes, 11(6), 1857. https://doi.org/10.3390/pr11061857