Temperature–Electrokinetic Co-Driven Perfluorooctane Sulfonic Acid (PFOS) Adsorption on Geo-Adsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterization of Activated Carbon and Zeolite
2.3. Determination of PFOS Concentration
2.4. Kinetics of PFOS Adsorption
2.4.1. Adsorption Kinetic Experiments
2.4.2. Adsorption Kinetic Models
2.5. Thermodynamics of PFOS Adsorption
2.5.1. Adsorption Isotherm Experiments
2.5.2. Adsorption Isotherms
2.5.3. Adsorption Thermodynamic Model
2.6. Quantification of the EOF Velocities
3. Results
3.1. Temperature–Electrokinetic Regulated Adsorption Breakthrough Curves
3.2. Temperature-Regulated PFOS Adsorption Kinetics and Thermodynamics
3.3. Electrokinetic-Regulated PFOS Adsorption Kinetics
3.4. Temperature–Electrokinetic Regulated PFOS Adsorption
3.5. Temperature–Electrokinetic Interactions and Their Regulation Framework
3.6. Potential Engineering Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U.B.; Budtz-Jørgensen, E. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds. Environ. Health Perspect. 2017, 125, 077018. [Google Scholar] [CrossRef] [PubMed]
- Gar Alalm, M.; Boffito, D.C. Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review. Chem. Eng. J. 2022, 450, 138352. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Barregard, L.; Xu, Y.; Scott, K.; Pineda, D.; Lindh, C.H.; Jakobsson, K.; Fletcher, T. Associations between perfluoroalkyl substances and serum lipids in a Swedish adult population with contaminated drinking water. Environ. Health 2020, 19, 33. [Google Scholar] [CrossRef] [Green Version]
- Mastrantonio, M.; Bai, E.; Uccelli, R.; Cordiano, V.; Screpanti, A.; Crosignani, P. Drinking water contamination from perfluoroalkyl substances (PFAS): An ecological mortality study in the Veneto Region, Italy. Eur. J. Public Health 2018, 28, 180–185. [Google Scholar] [CrossRef]
- Stanifer, J.W.; Stapleton, H.M.; Souma, T.; Wittmer, A.; Zhao, X.; Boulware, L.E. Perfluorinated Chemicals as Emerging Environmental Threats to Kidney Health. Clin. J. Am. Soc. Nephrol. 2018, 13, 1479. [Google Scholar] [CrossRef] [Green Version]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef]
- Batzella, E.; Girardi, P.; Russo, F.; Pitter, G.; Da Re, F.; Fletcher, T.; Canova, C. Perfluoroalkyl substance mixtures and cardio-metabolic outcomes in highly exposed male workers in the Veneto Region: A mixture-based approach. Environ. Res. 2022, 212, 113225. [Google Scholar] [CrossRef]
- Crone, B.C.; Speth, T.F.; Wahman, D.G.; Smith, S.J.; Abulikemu, G.; Kleiner, E.J.; Pressman, J.G. Occurrence of Per- and Polyfluoroalkyl Substances (PFAS) in Source Water and Their Treatment in Drinking Water. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2359–2396. [Google Scholar] [CrossRef]
- Tukker, A.M.; Bouwman, L.M.S.; van Kleef, R.G.D.M.; Hendriks, H.S.; Legler, J.; Westerink, R.H.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α1β2γ2L GABAA receptor and spontaneous neuronal network function in vitro. Sci. Rep. 2020, 10, 5311. [Google Scholar] [CrossRef] [Green Version]
- Svensson, K.; Tanner, E.; Gennings, C.; Lindh, C.; Kiviranta, H.; Wikström, S.; Bornehag, C.-G. Prenatal exposures to mixtures of endocrine disrupting chemicals and children’s weight trajectory up to age 5.5 in the SELMA study. Sci. Rep. 2021, 11, 11036. [Google Scholar] [CrossRef]
- Hou, J.; Li, G.; Liu, M.; Chen, L.; Yao, Y.; Fallgren, P.H.; Jin, S. Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil. Chemosphere 2022, 287, 132205. [Google Scholar] [CrossRef]
- Amii, H.; Uneyama, K. C–F bond activation in organic synthesis. Chem. Rev. 2009, 109, 2119–2183. [Google Scholar] [CrossRef]
- Sharma, S.; Shetti, N.P.; Basu, S.; Nadagouda, M.N.; Aminabhavi, T.M. Remediation of per- and polyfluoroalkyls (PFAS) via electrochemical methods. Chem. Eng. J. 2022, 430, 132895. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS removal by ion exchange resins: A review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y.-Q.; Mao, X.-M.; Li, H. Efficient removal of Cu(II) from an aqueous solution using a novel chitosan assisted EDTA-intercalated hydrotalcite-like compound composite: Preparation, characterization, and adsorption mechanism. Chem. Eng. J. 2022, 438, 135531. [Google Scholar] [CrossRef]
- Loganathan, N.; Wilson, A.K. Adsorption, Structure, and Dynamics of Short- and Long-Chain PFAS Molecules in Kaolinite: Molecular-Level Insights. Environ. Sci. Technol. 2022, 56, 8043–8052. [Google Scholar] [CrossRef]
- Shakya, A.; Vithanage, M.; Agarwal, T. Influence of pyrolysis temperature on biochar properties and Cr(VI) adsorption from water with groundnut shell biochars: Mechanistic approach. Environ. Res. 2022, 215, 114243. [Google Scholar] [CrossRef]
- Cui, J.; Gao, P.; Deng, Y. Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environ. Sci. Technol. 2020, 54, 3752–3766. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Fang, X.; Maimaiti, A.; Yu, G.; Deng, S. Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon. Chemosphere 2019, 224, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Shi, Y.; Huang, G.-z.; Huang, S.; Zheng, J.; Xu, J.; Zhu, F.; Ouyang, G. Facile Synthesis of a Fluorinated-Squaramide Covalent Organic Framework for the Highly Efficient and Broad-Spectrum Removal of Per- and Polyfluoroalkyl Pollutants. Angew. Chem. Int. Ed. 2022, 61, e202206749. [Google Scholar]
- Ten Hulscher, T.E.M.; Cornelissen, G. Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants—A review. Chemosphere 1996, 32, 609–626. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Defluoridation of drinking water using adsorption processes. J. Hazard. Mater. 2013, 248–249, 1–19. [Google Scholar] [CrossRef]
- Qin, J.; Moustafa, A.; Harms, H.; El-Din, M.G.; Wick, L.Y. The power of power: Electrokinetic control of PAH interactions with exfoliated graphite. J. Hazard. Mater. 2015, 288, 25–33. [Google Scholar] [CrossRef]
- Podolsky, R.D. Temperature and water viscosity: Physiological versus mechanical effects on suspension feeding. Science 1994, 265, 100–103. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Sprocati, R.; Gallo, A.; Sethi, R.; Rolle, M. Electrokinetic Delivery of Reactants: Pore Water Chemistry Controls Transport, Mixing, and Degradation. Environ. Sci. Technol. 2021, 55, 719–729. [Google Scholar] [CrossRef]
- Sprocati, R.; Rolle, M. On the interplay between electromigration and electroosmosis during electrokinetic transport in heterogeneous porous media. Water Res. 2022, 213, 118161. [Google Scholar] [CrossRef]
- Shan, Y.; Qin, J.; Harms, H.; Wick, L.Y. Electrokinetic effects on the interaction of phenanthrene with geo-sorbents. Chemosphere 2020, 242, 125161. [Google Scholar] [CrossRef]
- Sautel, M.; Elmaleh, H.; Leveiller, F. Comparison of Specific Surface Areas of a Micronized Drug Substance as Determined by Different Techniques. In Studies in Surface Science and Catalysis; Unger, K.K., Kreysa, G., Baselt, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 633–642. [Google Scholar]
- Nandi, D.; Shivrayan, M.; Gao, J.; Krishna, J.; Das, R.; Liu, B.; Thayumanavan, S.; Kulkarni, A. Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation. ACS Appl. Mater. Interfaces 2021, 13, 45300–45314. [Google Scholar] [CrossRef]
- Martin, J.; Gracia, A.R.; Asuero, A.G. Fitting Nonlinear Calibration Curves: No Models Perfect. J. Anal. Sci. Methods Instrum. 2017, 7, 74544. [Google Scholar] [CrossRef] [Green Version]
- Askeland, M.; Clarke, B.O.; Cheema, S.A.; Mendez, A.; Gasco, G.; Paz-Ferreiro, J. Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture. Chemosphere 2020, 249, 126072. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Braunig, J.; Thompson, K.; Thompson, J.; Kabiri, S.; Navarro, D.A.; Kookana, R.S.; Grimison, C.; Barnes, C.M.; Higgins, C.P.; et al. Influences of Chemical Properties, Soil Properties, and Solution pH on Soil-Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environ. Sci. Technol. 2020, 54, 15883–15892. [Google Scholar] [CrossRef]
- Kopinke, F.-D.; Georgi, A.; Goss, K.-U. Comment on “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solution: A critical review, published by Tran et al. [Water Research 120, 2017, 88–116]”. Water Res. 2018, 129, 520–521. [Google Scholar] [CrossRef]
- Du, Z.; Deng, S.; Liu, D.; Yao, X.; Wang, Y.; Lu, X.; Wang, B.; Huang, J.; Wang, Y.; Xing, B.; et al. Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process. Chem. Eng. J. 2016, 290, 405–413. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2020, 711, 134847. [Google Scholar] [CrossRef] [PubMed]
- Mangla, D.; Sharma, A.; Ikram, S. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective. J. Hazard. Mater. 2022, 425, 127946. [Google Scholar] [CrossRef] [PubMed]
- Vallano, P.T.; Remcho, V.T. Modeling interparticle and intraparticle (perfusive) electroosmotic flow in capillary electrochromatography. Anal. Chem. 2000, 72, 4255–4265. [Google Scholar] [CrossRef]
- Olivares, W.; Croxton, T.L.; McQuarrie, D.A. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1980, 84, 867–869. [Google Scholar] [CrossRef]
- Sharma, P.K.; Hanumantha Rao, K. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: Surface thermodynamics and extended DLVO theory. Colloids Surf. B Biointerfaces 2003, 29, 21–38. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Mat, R.; Somderam, S.; Abd Aziz, A.S.; Mohamed, A. Hydrogen sulfide adsorption by zinc oxide-impregnated zeolite (synthesized from Malaysian kaolin) for biogas desulfurization. J. Ind. Eng. Chem. 2018, 65, 334–342. [Google Scholar] [CrossRef]
- de Aquino, T.F.; Estevam, S.T.; Viola, V.O.; Marques, C.R.M.; Zancan, F.L.; Vasconcelos, L.B.; Riella, H.G.; Pires, M.J.R.; Morales-Ospino, R.; Torres, A.E.B.; et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 2020, 276, 118143. [Google Scholar] [CrossRef]
- Baduel, C.; Mueller, J.F.; Rotander, A.; Corfield, J.; Gomez-Ramos, M.-J. Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere 2017, 185, 1030–1038. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.K.; Barber, L.B.; LeBlanc, D.R.; Sunderland, E.M.; Vecitis, C.D. Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, cape cod, massachusetts. Environ. Sci. Technol. 2017, 51, 4269–4279. [Google Scholar] [CrossRef]
- Høisæter, Å.; Pfaff, A.; Breedveld, G.D. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. J. Contam. Hydrol. 2019, 222, 112–122. [Google Scholar] [CrossRef]
- Shojaei, M.; Kumar, N.; Chaobol, S.; Wu, K.; Crimi, M.; Guelfo, J. Enhanced Recovery of Per- and Polyfluoroalkyl Substances (PFASs) from Impacted Soils Using Heat Activated Persulfate. Environ. Sci. Technol. 2021, 55, 9805–9816. [Google Scholar] [CrossRef]
Time (min) | Methanol (%) | 10 mM Ammonium Acetate (%) |
---|---|---|
0.00 | 30 | 70 |
0.30 | 30 | 70 |
0.40 | 90 | 10 |
2.50 | 90 | 10 |
2.60 | 30 | 70 |
6.00 | 30 | 70 |
Adsorbent | Specific Surface Area | Pore Size | Zeta Potentia ζ |
---|---|---|---|
(m2 g−1) | (nm) | (mV) | |
Activated carbon | 144.4 | 6.9 | −17.2 |
Zeolite | 2.9 | 6.5 | −30.9 |
Adsorbent | Temperature °C | Pseudo-Second-Order Parameters with the Absence of DC Fields | Pseudo-Second-Order Parameters under 1 V cm−1 | Pseudo-Second-Order Parameters under 2 V cm−1 | Pseudo-Second-Order Parameters under 3 V cm−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe | k2 (10−3) | R2 | qe | k2 (10−3) | R2 | qe | k2 (10−3) | R2 | qe | k2 (10−3) | R2 | ||
Activated carbon | 10 | 66.7 | 0.19 | 0.95 | 70.9 | 0.17 | 0.94 | 74.6 | 0.15 | 0.94 | 84.0 | 0.12 | 0.94 |
20 | 47.9 | 0.36 | 0.97 | 52.9 | 0.29 | 0.97 | 59.5 | 0.23 | 0.96 | 67.6 | 0.18 | 0.96 | |
30 | 37.8 | 0.57 | 0.97 | 41.7 | 0.47 | 0.97 | 48.5 | 0.35 | 0.97 | 55.0 | 0.27 | 0.96 | |
40 | 31.6 | 0.83 | 0.98 | 36.2 | 0.63 | 0.97 | 39.5 | 0.53 | 0.97 | 44.8 | 0.42 | 0.97 | |
50 | 28.4 | 1.03 | 0.98 | 31.3 | 0.85 | 0.98 | 34.3 | 0.71 | 0.97 | 39.6 | 0.52 | 0.98 | |
Zeolite | 10 | 0.54 | 139.6 | 0.98 | 0.45 | 213.7 | 0.98 | 0.43 | 238.4 | 0.98 | 0.40 | 280.8 | 0.98 |
20 | 0.46 | 195.8 | 0.99 | 0.43 | 228.9 | 0.99 | 0.39 | 280.4 | 0.99 | 0.37 | 302.1 | 0.99 | |
30 | 0.44 | 205.2 | 0.99 | 0.39 | 266.1 | 0.99 | 0.36 | 313.1 | 0.99 | 0.35 | 343.0 | 0.99 | |
40 | 0.38 | 273.7 | 1.00 | 0.36 | 311.1 | 1.00 | 0.32 | 390.5 | 1.00 | 0.31 | 421.4 | 1.00 | |
50 | 0.35 | 326.6 | 1.00 | 0.33 | 366.9 | 1.00 | 0.32 | 395.8 | 1.00 | 0.30 | 434.6 | 1.00 |
Adsorbent | Temperature °C | Pseudo-First-Order Parameters with the Absence of DC Fields | Pseudo-First-Order Parameters under 1 V cm−1 | Pseudo-First-Order Parameters under 2 V cm−1 | Pseudo-First-Order Parameters under 3 V cm−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe | k1 | R2 | qe | k1 | R2 | qe | k1 | R2 | qe | k1 | R2 | ||
Activated carbon | 10 | 57.24 | 0.18 | 0.74 | 57.60 | 0.17 | 0.74 | 57.68 | 0.17 | 0.74 | 59.84 | 0.17 | 0.74 |
20 | 47.10 | 0.17 | 0.77 | 50.11 | 0.17 | 0.75 | 50.80 | 0.17 | 0.77 | 54.10 | 0.17 | 0.75 | |
30 | 39.15 | 0.17 | 0.81 | 41.09 | 0.17 | 0.79 | 44.63 | 0.16 | 0.78 | 45.98 | 0.16 | 0.80 | |
40 | 34.14 | 0.17 | 0.82 | 35.37 | 0.16 | 0.88 | 37.68 | 0.16 | 0.84 | 40.17 | 0.16 | 0.81 | |
50 | 30.30 | 0.16 | 0.85 | 32.12 | 0.16 | 0.83 | 33.12 | 0.16 | 0.87 | 35.72 | 0.16 | 0.82 | |
Zeolite | 10 | 0.57 | 0.15 | 0.94 | 0.50 | 0.19 | 0.97 | 0.44 | 0.20 | 0.97 | 0.43 | 0.21 | 0.95 |
20 | 0.49 | 0.15 | 0.92 | 0.46 | 0.16 | 0.92 | 0.43 | 0.16 | 0.90 | 0.41 | 0.19 | 0.90 | |
30 | 0.46 | 0.15 | 0.96 | 0.43 | 0.16 | 0.92 | 0.39 | 0.17 | 0.97 | 0.37 | 0.16 | 0.96 | |
40 | 0.40 | 0.15 | 0.93 | 0.39 | 0.15 | 0.92 | 0.33 | 0.15 | 0.96 | 0.32 | 0.16 | 0.95 | |
50 | 0.35 | 0.15 | 0.94 | 0.33 | 0.15 | 0.94 | 0.33 | 0.15 | 0.93 | 0.31 | 0.15 | 0.94 |
Adsorbent | Temperature | Freundlich Isotherm Parameters | Langmuir Isotherm Parameters | ||||
---|---|---|---|---|---|---|---|
(°C) | log KF | n | R2 | Qmax (mg g−1) | KL (103 L mg−1) | R2 | |
Activated carbon | 10 | 6.09 | 0.43 | 0.99 | 925.9 | 21.60 | 0.89 |
20 | 6.03 | 0.42 | 0.98 | 909.1 | 18.33 | 0.89 | |
30 | 5.92 | 0.41 | 0.99 | 900.9 | 12.33 | 0.89 | |
40 | 5.88 | 0.42 | 0.97 | 885.0 | 9.42 | 0.88 | |
50 | 5.85 | 0.42 | 0.97 | 877.2 | 8.14 | 0.88 | |
Zeolite | 10 | 3.90 | 0.78 | 0.98 | 19.23 | 0.71 | 0.99 |
20 | 3.86 | 0.77 | 0.98 | 18.52 | 0.64 | 0.98 | |
30 | 3.83 | 0.79 | 0.99 | 17.86 | 0.60 | 0.98 | |
40 | 3.77 | 0.81 | 0.99 | 15.87 | 0.54 | 0.99 | |
50 | 3.70 | 0.81 | 1.00 | 14.93 | 0.48 | 0.99 |
Adsorbent | Temperature | ΔG | ΔH | ΔS |
---|---|---|---|---|
(°C) | (kJ mol−1) | (kJ mol−1) | (kJ mol−1 k−1) | |
Activated carbon | 10 | −42.26 ± 0.34 | −9.79 ± 1.44 | 0.12 ± 0.01 |
20 | −43.68 ± 0.34 | |||
30 | −44.69 ± 0.11 | |||
40 | −45.66 ± 0.24 | |||
50 | −47.01 ± 1.18 | |||
Zeolite | 10 | −24.70 ± 0.49 | −12.92 ± 1.16 | 0.042 ± 0.003 |
20 | −25.48 ± 0.50 | |||
30 | −25.90 ± 0.69 | |||
40 | −26.03 ± 0.56 | |||
50 | −26.51 ± 0.55 |
Intercept | Std. Error | p | Slope | Std. Error | p | R2 | |
---|---|---|---|---|---|---|---|
AC−10 a | 0.19 | 0.004 | 0.000 | −0.009 | 0.001 | 0.009 | 0.98 |
AC−20 | 0.35 | 0.004 | 0.000 | −0.018 | 0.001 | 0.001 | 1.00 |
AC−30 | 0.57 | 0.012 | 0.000 | −0.025 | 0.002 | 0.004 | 0.98 |
AC−40 | 0.81 | 0.030 | 0.001 | −0.027 | 0.003 | 0.013 | 0.96 |
AC−50 | 1.01 | 0.011 | 0.001 | −0.027 | 0.001 | 0.003 | 1.00 |
ZE−10 b | 0.15 | 0.013 | 0.007 | 0.010 | 0.002 | 0.023 | 0.95 |
ZE−20 | 0.20 | 0.007 | 0.001 | 0.006 | 0.001 | 0.011 | 0.97 |
ZE−30 | 0.21 | 0.009 | 0.002 | 0.006 | 0.001 | 0.011 | 0.98 |
ZE−40 | 0.27 | 0.012 | 0.002 | 0.006 | 0.001 | 0.015 | 0.97 |
ZE−50 | 0.33 | 0.029 | 0.000 | 0.003 | 0.000 | 0.002 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Shan, Y.; Ma, D.; Yang, L.; Zhan, M.; Liu, P.; Lou, B.; Zhang, B.; Jiao, W.; Yin, L. Temperature–Electrokinetic Co-Driven Perfluorooctane Sulfonic Acid (PFOS) Adsorption on Geo-Adsorbents. Processes 2023, 11, 1856. https://doi.org/10.3390/pr11061856
Yin Y, Shan Y, Ma D, Yang L, Zhan M, Liu P, Lou B, Zhang B, Jiao W, Yin L. Temperature–Electrokinetic Co-Driven Perfluorooctane Sulfonic Acid (PFOS) Adsorption on Geo-Adsorbents. Processes. 2023; 11(6):1856. https://doi.org/10.3390/pr11061856
Chicago/Turabian StyleYin, Yuzhou, Yongping Shan, Dong Ma, Liuqing Yang, Mingxiu Zhan, Ping Liu, Benzhen Lou, Bo Zhang, Wentao Jiao, and Lichu Yin. 2023. "Temperature–Electrokinetic Co-Driven Perfluorooctane Sulfonic Acid (PFOS) Adsorption on Geo-Adsorbents" Processes 11, no. 6: 1856. https://doi.org/10.3390/pr11061856
APA StyleYin, Y., Shan, Y., Ma, D., Yang, L., Zhan, M., Liu, P., Lou, B., Zhang, B., Jiao, W., & Yin, L. (2023). Temperature–Electrokinetic Co-Driven Perfluorooctane Sulfonic Acid (PFOS) Adsorption on Geo-Adsorbents. Processes, 11(6), 1856. https://doi.org/10.3390/pr11061856