Synthesis and Biological Evaluation of α-Tocopherol Derivatives as Potential Anticancer Agents
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemistry
3.1.1. General
3.1.2. Steps for the Preparation of Compound 3
3.1.3. Steps for the Preparation of Compound 4
3.1.4. General Procedure for the Synthesis of α-TEA and Compounds 5–10
3.2. Cytotoxicity Test Assay
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chorawala, M.R.; Oza, P.M.; Shah, G.B. Mechanism of Anticancer Drugs Resistance: An Overview. Int. J. Pharm. Sci. Drug Res. 2012, 4, 1–9. [Google Scholar]
- Panda, V.; Khambat, P.; Patil, S. Mitocans as Novel Agents for Anticancer Therapy: An Overview. Int. J. Clin. Med. 2011, 2, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.-F.; Jameson, V.J.A.; Tilly, D.; Cerny, J.; Mahdavian, E.; Marín-Hernández, A.; Hernández-Esquivel, L.; Rodríguez-Enríquez, S.; Stursa, J.; Witting, P.K.; et al. Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-Apoptotic and Anti-Cancer Activity via Mitochondrial Complex II. J. Biol. Chem. 2011, 286, 3717–3728. [Google Scholar] [CrossRef] [Green Version]
- Neuzil, J.; Dyason, J.C.; Freeman, R.; Dong, L.-F.; Prochazka, L.; Wang, X.-F.; Scheffler, I.; Ralph, S.J. Mitocans as Anti-Cancer Agents Targeting Mitochondria: Lessons from Studies with Vitamin E Analogues, Inhibitors of Complex II. J. Bioenerg. Biomembr. 2007, 39, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Gopalan, V.; Holland, O.; Neuzil, J. Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 7941. [Google Scholar] [CrossRef]
- Neuzil, J.; Tomasetti, M.; Mellick, A.; Alleva, R.; Salvatore, B.; Birringer, M.; Fariss, M. Vitamin E Analogues: A New Class of Inducers of Apoptosis with Selective Anti-Cancer Effects. CCDT 2004, 4, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Neuzil, J.; Weber, T.; Schröder, A.; Lu, M.; Ostermann, G.; Gellert, N.; Mayne, G.C.; Olejnicka, B.; Nègre-Salvayre, A.; Stícha, M.; et al. Induction of Cancer Cell Apoptosis by α-Tocopheryl Succinate: Molecular Pathways and Structural Requirements. FASEB J. 2001, 15, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Lu, M.; Andera, L.; Lahm, H.; Gellert, N.; Fariss, M.W.; Korinek, V.; Sattler, W.; Ucker, D.S.; Terman, A.; et al. Vitamin E Succinate Is a Potent Novel Antineoplastic Agent with High Selectivity and Cooperativity with Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (Apo2 Ligand) In Vivo. Clin. Cancer Res. 2002, 8, 863. [Google Scholar]
- Yu, Z.-Q.; Wang, L.-M.; Yang, W.-X. How Vitamin E and Its Derivatives Regulate Tumour Cells via the MAPK Signalling Pathway? Gene 2022, 808, 145998. [Google Scholar] [CrossRef]
- Majima, D.; Mitsuhashi, R.; Fukuta, T.; Tanaka, T.; Kogure, K. Biological Functions of α-Tocopheryl Succinate. J. Nutr. Sci. Vitaminol. 2019, 65, S104–S108. [Google Scholar] [CrossRef]
- Wang, X.-F.; Dong, L.; Zhao, Y.; Tomasetti, M.; Wu, K.; Neuzil, J. Vitamin E Analogues as Anticancer Agents: Lessons from Studies with α-Tocopheryl Succinate. Mol. Nutr. Food Res. 2006, 50, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Kogure, K.; Manabe, S.; Suzuki, I.; Tokumura, A.; Fukuzawa, K. Cytotoxicity of Alpha-Tocopheryl Succinate, Malonate and Oxalate in Normal and Cancer Cells in vitro and Their Anti-Cancer Effects on Mouse Melanoma in vivo. J. Nutr. Sci. Vitaminol. 2005, 51, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Neuzil, J.; Wu, K. Vitamin E Analogues as Mitochondria-Targeting Compounds: From the Bench to the Bedside? Mol. Nutr. Food Res. 2009, 53, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, S.H.; Hew, N.F.; Ong, A.S.H.; Choo, Y.M.; Brumby, S. Tocotrienols from Palm Oil: Electron Spin Resonance Spectra of Tocotrienoxyl Radicals. J. Am. Oil Chem. Soc. 1990, 67, 250–254. [Google Scholar] [CrossRef]
- Ghayour-Mobarhan, M.; Saghiri, Z.; Ferns, G.; Sahebkar, A. α-Tocopheryl Phosphate as a Bioactive Derivative of Vitamin E: A Review of the Literature. J. Diet. Suppl. 2015, 12, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Picinich, S.C.; Yang, Z.; Zhao, Y.; Suh, N.; Kong, A.-N.; Yang, C.S. Cancer-Preventive Activities of Tocopherols and Tocotrienols. Carcinogenesis 2010, 31, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Rezk, B.M. Alpha-Tocopheryl Phosphate Is a Novel Apoptotic Agent. Front. Biosci. 2007, 12, 2013. [Google Scholar] [CrossRef] [Green Version]
- Bidossi, A.; Bortolin, M.; Toscano, M.; De Vecchi, E.; Romanò, C.L.; Mattina, R.; Drago, L. In Vitro Comparison between α-Tocopheryl Acetate and α-Tocopheryl Phosphate against Bacteria Responsible of Prosthetic and Joint Infections. PLoS ONE 2017, 12, e0182323. [Google Scholar] [CrossRef] [Green Version]
- Harper, R.A.; Saleh, M.M.; Carpenter, G.; Abbate, V.; Proctor, G.; Harvey, R.D.; Gambogi, R.J.; Geonnotti, A.; Hider, R.; Jones, S.A. Soft, Adhesive (+) Alpha Tocopherol Phosphate Planar Bilayers That Control Oral Biofilm Growth through a Substantive Antimicrobial Effect. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2307–2316. [Google Scholar] [CrossRef]
- Hama, S.; Kirimura, N.; Obara, A.; Takatsu, H.; Kogure, K. Tocopheryl Phosphate Inhibits Rheumatoid Arthritis-Related Gene Expression In Vitro and Ameliorates Arthritic Symptoms in Mice. Molecules 2022, 27, 1425. [Google Scholar] [CrossRef]
- Dong, L.-F.; Grant, G.; Massa, H.; Zobalova, R.; Akporiaye, E.; Neuzil, J. α-Tocopheryloxyacetic Acid Is Superior to α-Tocopheryl Succinate in Suppressing HER2-High Breast Carcinomas Due to Its Higher Stability. Int. J. Cancer 2012, 131, 1052–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, K.A.; Anderson, K.; Menchaca, M.; Atkinson, J.; Sun, L.; Knight, V.; Gilbert, B.E.; Conti, C.; Sanders, B.G.; Kline, K. Novel Vitamin E Analogue Decreases Syngeneic Mouse Mammary Tumor Burden and Reduces Lung Metastasis. Mol. Cancer Ther. 2003, 2, 437. [Google Scholar] [PubMed]
- Lawson, K.A.; Anderson, K.; Simmons-Menchaca, M.; Atkinson, J.; Sun, L.; Sanders, B.G.; Kline, K. Comparison of Vitamin E Derivatives α-TEA and VES in Reduction of Mouse Mammary Tumor Burden and Metastasis. Exp. Biol. Med. 2004, 229, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Akporiaye, E.T. α-TEA as a Stimulator of Tumor Autophagy and Enhancer of Antigen Cross-Presentation. Autophagy 2013, 9, 429–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, T.; Bradley-Dunlop, D.J.; Hurley, L.H.; Von-Hoff, D.; Gately, S.; Mary, D.L.; Lu, H.; Penichet, M.L.; Besselsen, D.G.; Cole, B.B.; et al. The Vitamin E Analog, Alpha-Tocopheryloxyacetic Acid Enhances the Anti-Tumor Activity of Trastuzumab against HER2/Neu-Expressing Breast Cancer. BMC Cancer 2011, 11, 471. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Kume, A.; Umemiya-Shirafuji, R.; Kasai, S.; Suzuki, H. Effect of α-Tocopheryloxy Acetic Acid, a Vitamin E Derivative Mitocan, on the Experimental Infection of Mice with Plasmodium Yoelii. Malar. J. 2021, 20, 280. [Google Scholar] [CrossRef]
- Hahn, T.; Szabo, L.; Gold, M.; Ramanathapuram, L.; Hurley, L.H.; Akporiaye, E.T. Dietary Administration of the Proapoptotic Vitamin E Analogue Alpha-Tocopheryloxyacetic Acid Inhibits Metastatic Murine Breast Cancer. Cancer Res. 2006, 66, 9374–9378. [Google Scholar] [CrossRef] [Green Version]
- Kline, K.; Yu, W.; Sanders, B.G. Vitamin E and Breast Cancer. J. Nutr. 2004, 134, 3458S–3462S. [Google Scholar] [CrossRef] [Green Version]
- Tiwary, R.; Yu, W.; Sanders, B.G.; Kline, K. α-TEA Cooperates with Chemotherapeutic Agents to Induce Apoptosis of P53 Mutant, Triple-Negative Human Breast Cancer Cells via Activating P73. Breast Cancer Res. 2011, 13, R1. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hahn, T.; Garrison, K.; Cui, Z.-H.; Thorburn, A.; Thorburn, J.; Hu, H.-M.; Akporiaye, E.T. The Vitamin E Analogue α-TEA Stimulates Tumor Autophagy and Enhances Antigen Cross-Presentation. Cancer Res. 2012, 72, 3535–3545. [Google Scholar] [CrossRef] [Green Version]
- Neuzil, J.; Kågedal, K.; Andera, L.; Weber, C.; Brunk, U.T. Vitamin E Analogs: A New Class of Multiple Action Agents with Anti-Neoplastic and Anti-Atherogenic Activity. Apoptosis 2002, 7, 179–187. [Google Scholar] [CrossRef]
- Jia, L.; Yu, W.; Wang, P.; Sanders, B.G.; Kline, K. In Vivo and in vitro Studies of Anticancer Actions of α-TEA for Human Prostate Cancer Cells. Prostate 2008, 68, 849–860. [Google Scholar] [CrossRef]
- Yao, J.; Gao, P.; Xu, Y.; Li, Z. α-TEA Inhibits the Growth and Motility of Human Colon Cancer Cells via Targeting RhoA/ROCK Signaling. Mol. Med. Rep. 2016, 14, 2534–2540. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zu, K.; Ni, J.; Yeh, S.; Kasi, D.; James, N.S.; Chemler, S.; Ip, C. Cellular and Molecular Effects of Alpha-Tocopheryloxybutyrate: Lessons for the Design of Vitamin E Analog for Cancer Prevention. Anticancer Res. 2004, 24, 3795–3802. [Google Scholar]
- Ni, J.; Mai, T.; Pang, S.-T.; Haque, I.; Huang, K.; DiMaggio, M.A.; Xie, S.; James, N.S.; Kasi, D.; Chemler, S.R.; et al. In Vitro and In Vivo Anticancer Effects of the Novel Vitamin E Ether Analogue RRR-Tocopheryloxybutyl Sulfonic Acid in Prostate Cancer. Clin. Cancer Res. 2009, 15, 898–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khallouki, F.; Hajji, L.; Saber, S.; Bouddine, T.; Edderkaoui, M.; Bourhia, M.; Mir, N.; Lim, A.; El Midaoui, A.; Giesy, J.P.; et al. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. JPM 2023, 13, 754. [Google Scholar] [CrossRef]
- Zhang, S.; Lawson, K.A.; Simmons-Menchaca, M.; Sun, L.; Sanders, B.G.; Kline, K. Vitamin E Analog α-TEA and Celecoxib Alone and Together Reduce Human MDA-MB-435-FL-GFP Breast Cancer Burden and Metastasis in Nude Mice. Breast Cancer Res. Treat. 2004, 87, 111–121. [Google Scholar] [CrossRef]
- Anderson, K.; Lawson, K.A.; Simmons-Menchaca, M.; Sun, L.; Sanders, B.G.; Kline, K. Alpha-TEA plus Cisplatin Reduces Human Cisplatin-Resistant Ovarian Cancer Cell Tumor Burden and Metastasis. Exp. Biol. Med. 2004, 229, 1169–1176. [Google Scholar] [CrossRef]
- Yu, W.; Shun, M.; Anderson, K.; Chen, H.; Sanders, B.G.; Kline, K. α-TEA Inhibits Survival and Enhances Death Pathways in Cisplatin Sensitive and Resistant Human Ovarian Cancer Cells. Apoptosis 2006, 11, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingam, K.; Song, Y.; Lippard, S.J. Conjugation of Vitamin E Analog α-TOS to Pt(Iv) Complexes for Dual-Targeting Anticancer Therapy. Chem. Commun. 2014, 50, 2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuzil, J. α-Tocopheryl Succinate Epitomizes a Compound with a Shift in Biological Activity Due to pro-Vitamin-to-Vitamin Conversion. Biochem. Biophys. Res. Commun. 2002, 293, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Birringer, M.; EyTina, J.H.; Salvatore, B.A.; Neuzil, J. Vitamin E Analogues as Inducers of Apoptosis: Structure–Function Relation. Br. J. Cancer 2003, 88, 1948–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuzil, J.; Tomasetti, M.; Zhao, Y.; Dong, L.-F.; Birringer, M.; Wang, X.-F.; Low, P.; Wu, K.; Salvatore, B.A.; Ralph, S.J. Vitamin E Analogs, a Novel Group of “Mitocans”, as Anticancer Agents: The Importance of Being Redox-Silent. Mol. Pharmacol. 2007, 71, 1185–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuzil, J.; Weber, T.; Gellert, N.; Weber, C. Selective Cancer Cell Killing by Alpha-Tocopheryl Succinate. Br. J. Cancer 2001, 84, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Neuzil, J.; Zhao, M.; Ostermann, G.; Sticha, M.; Gellert, N.; Weber, C.; Eaton, J.W.; Brunk, U.T. α-Tocopheryl Succinate, an Agent with in vivo Anti-Tumour Activity, Induces Apoptosis by Causing Lysosomal Instability. Biochem. J. 2002, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Mazzini, F.; Betti, M.; Canonico, B.; Netscher, T.; Luchetti, F.; Papa, S.; Galli, F. Anticancer Activity of Vitamin E-Derived Compounds in Murine C6 Glioma Cells. ChemMedChem 2010, 5, 540–543. [Google Scholar] [CrossRef]
- Gerweck, L.E.; Seetharaman, K. Cellular PH Gradient in Tumor versus Normal Tissue: Potential Exploitation for the Treatment of Cancer. Cancer Res. 1996, 56, 1194–1198. [Google Scholar]
- Kogure, K.; Hama, S.; Kisaki, M.; Takemasa, H.; Tokumura, A.; Suzuki, I.; Fukuzawa, K. Structural Characteristic of Terminal Dicarboxylic Moiety Required for Apoptogenic Activity of α-Tocopheryl Esters. Biochim. Biophys. Acta (BBA) Gen. Subj. 2004, 1672, 93–99. [Google Scholar] [CrossRef]
- Yan, B.; Stantic, M.; Zobalova, R.; Bezawork-Geleta, A.; Stapelberg, M.; Stursa, J.; Prokopova, K.; Dong, L.; Neuzil, J. Mitochondrially Targeted Vitamin E Succinate Efficiently Kills Breast Tumour-Initiating Cells in a Complex II-Dependent Manner. BMC Cancer 2015, 15, 401. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.-F.; Low, P.; Dyason, J.C.; Wang, X.-F.; Prochazka, L.; Witting, P.K.; Freeman, R.; Swettenham, E.; Valis, K.; Liu, J.; et al. α-Tocopheryl Succinate Induces Apoptosis by Targeting Ubiquinone-Binding Sites in Mitochondrial Respiratory Complex II. Oncogene 2008, 27, 4324–4335. [Google Scholar] [CrossRef] [Green Version]
- Neuzil, J.; Cerny, J.; Dyason, J.C.; Dong, L.-F.; Ralph, S.J. Affinity of Vitamin E Analogues for the Ubiquinone Complex II Site Correlates with Their Toxicity to Cancer Cells. Mol. Nutr. Food Res. 2011, 55, 1543–1551. [Google Scholar] [CrossRef]
- Zwierzak, A. Phase-Transfer-Catalysed Phosphorylation of Alcohols in a Two-Phase System. Synthesis 1976, 1976, 305–306. [Google Scholar] [CrossRef]
- López, G.V.; Batthyány, C.; Blanco, F.; Botti, H.; Trostchansky, A.; Migliaro, E.; Radi, R.; González, M.; Cerecetto, H.; Rubbo, H. Design, Synthesis, and Biological Characterization of Potential Antiatherogenic Nitric Oxide Releasing Tocopherol Analogs. Bioorg. Med. Chem. 2005, 13, 5787–5796. [Google Scholar] [CrossRef]
- Rárová, L.; Steigerová, J.; Kvasnica, M.; Bartůněk, P.; Křížová, K.; Chodounská, H.; Kolář, Z.; Sedlák, D.; Oklestkova, J.; Strnad, M. Structure Activity Relationship Studies on Cytotoxicity and the Effects on Steroid Receptors of AB-Functionalized Cholestanes. J. Steroid Biochem. Mol. Biol. 2016, 159, 154–169. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrödinger, L.; DeLano, W. The PyMOL Molecular Graphics System, Version 1.3r1. PyMOL. Available online: http://www.pymol.org/pymol (accessed on 26 May 2023).
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Yankovskaya, V.; Horsefield, R.; Törnroth, S.; Luna-Chavez, C.; Miyoshi, H.; Léger, C.; Byrne, B.; Cecchini, G.; Iwata, S. Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation. Science 2003, 299, 700–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, U.C.; Kollman, P.A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129–145. [Google Scholar] [CrossRef]
- Agarwal, R.; Smith, J.C. Speed vs Accuracy: Effect on Ligand Pose Accuracy of Varying Box Size and Exhaustiveness in AutoDock Vina. Mol. Inform. 2023, 42, 2200188. [Google Scholar] [CrossRef]
Compound | R | CEM | MCF7 | HeLa | BJ | Complex II Affinity (kcal/mol) |
---|---|---|---|---|---|---|
α-TS | 33.8 ± 0.0 | 48.6 ± 2.1 | 45.8 ± 0.8 | 43.3 ± 2.3 | −7.4 | |
α-TO | 24.6 ± 3.6 | 31.0 ± 7.4 | 28.1 ± 0.3 | 45.1 ± 2.4 | −6.9 | |
α-TM | 17.8 ± 1.2 | 41.1 ± 6.3 | 26.9 ± 7.4 | 45.0 ± 0.8 | −7.4 | |
α-TEA | 32.0 ± 1.2 | 48.2 ± 1.1 | 40.9 ± 3.9 | 40.4 ± 6.6 | −7.2 | |
α-TP | >50 | >50 | >50 | >50 | −7.5 | |
3 | >50 | >50 | >50 | >50 | −7.1 | |
4 | >50 | >50 | 35.3 ± 0.8 | >50 | −7.0 | |
5 | 24.5 ± 2.1 | 47.3 ± 0.1 | 17.2 ± 3.4 | 43.6 ± 2.2 | −7.4 | |
6 | 24.5 ± 6.3 | 46.6 ± 0.4 | 13.1 ± 0.1 | 41.8 ± 1.7 | −7.3 | |
7 | 14.1 ± 0.8 | >50 | >50 | >50 | −7.5 | |
8 | 31.5 ± 3.7 | 26.9 ± 4.5 | 31.5 ± 3.6 | >50 | −7.3 | |
9 | 28.7 ± 1.0 | 21.6 ± 1.0 | 29.9 ± 2.0 | 35.5 ± 3.7 | −7.4 | |
10 | >50 | >50 | >50 | >50 | −7.4 | |
Dox | – | 0.255 ± 0.022 | 0.273 ± 0.019 | 0.868 ± 0.054 | 0.278 ± 0.036 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baj, A.; Rárová, L.; Ratkiewicz, A.; Strnad, M.; Witkowski, S. Synthesis and Biological Evaluation of α-Tocopherol Derivatives as Potential Anticancer Agents. Processes 2023, 11, 1860. https://doi.org/10.3390/pr11061860
Baj A, Rárová L, Ratkiewicz A, Strnad M, Witkowski S. Synthesis and Biological Evaluation of α-Tocopherol Derivatives as Potential Anticancer Agents. Processes. 2023; 11(6):1860. https://doi.org/10.3390/pr11061860
Chicago/Turabian StyleBaj, Aneta, Lucie Rárová, Artur Ratkiewicz, Miroslav Strnad, and Stanislaw Witkowski. 2023. "Synthesis and Biological Evaluation of α-Tocopherol Derivatives as Potential Anticancer Agents" Processes 11, no. 6: 1860. https://doi.org/10.3390/pr11061860
APA StyleBaj, A., Rárová, L., Ratkiewicz, A., Strnad, M., & Witkowski, S. (2023). Synthesis and Biological Evaluation of α-Tocopherol Derivatives as Potential Anticancer Agents. Processes, 11(6), 1860. https://doi.org/10.3390/pr11061860