Investigation of the Antimicrobial and Physico-Mechanical Properties of Nature-Friendly Nanosilver-Loaded Pig Lining Leather Prepared Using Exhaustion Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Application of AgPBL to Pig Lining Leather
2.3. Antibacterial and Antifungal Activities of the Treated Pig Leather
- W: width of clear zone of inhibition, mm;
- T: total diameter of the test specimen and clear zone, mm;
- D: diameter of the test specimen, mm.
- R: the bacterial reduction percentage, %;
- Ct and Tt: the average number of colonies of three control samples and three test samples after 24 h, respectively, CFU/mL.
2.4. Characterization of the Treated Pig Leather
2.5. Physico-Mechanical Properties of the Treated Pig Leather
3. Results and Discussion
3.1. Antibacterial and Antifungal Efficacy of the AgPBL-Treated Pig Leather
3.1.1. Antibacterial Efficacy
3.1.2. Antifungal Efficacy
3.2. Coloration and Characteristics of the AgPBL-Treated Pig Leather
3.3. The Physico-Mechanical Properties of the AgPBL-Treated Pig Leather
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Healy, A.; Dunning, D.N.; Chockalingam, N. Materials used for footwear orthoses: A review. Footwear Sci. 2010, 2, 93–110. [Google Scholar] [CrossRef]
- Nalyanya, K.M.; Rop, R.K.; Onyuka, A.S.; Birech, Z. A review of natural plants as sources of substances for cleaner leather tanning technologies. Text. Leather Rev. 2021, 4, 137–148. [Google Scholar] [CrossRef]
- Orlita, A. Microbial biodeterioration of leather and its control: A review. Int. Biodeterior. Biodegrad. 2004, 53, 157–163. [Google Scholar] [CrossRef]
- Hossain, M.; Azam, F.A.B.; Chowdhury, M. Quality assessment of shoe leather based on the properties of strength and comfort, collected from different footwear and leather industries in Bangladesh. Text. Leather Rev. 2021, 4, 30–37. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, X.; Zheng, M.; Yue, O.; Xie, L.; Zha, S.; Dong, S.; Li, T.; Song, Y.; Huang, M.; et al. Leather for flexible multifunctional bio-based materials: A review. J. Leather Sci. Eng. 2022, 4, 16. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, L.; Hu, K.; Li, K.; Xiang, J.; Liu, G.; Wang, Y. Chromium Cross-Linking Based Immobilization of Silver Nanoparticle Coating on Leather Surface with Broad-Spectrum Antimicrobial Activity and Durability. ACS Appl. Mater. Interfaces 2019, 11, 2352–2363. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, J.; Mu, C.; Wang, C.; Lin, W. Advances in Antimicrobial Polymer Coatings in the Leather Industry: A Comprehensive Review. J. Leather Sci. Eng. 2021, 60, 15004–15018. [Google Scholar] [CrossRef]
- Fan, Q.; Ma, J.; Xu, Q. Insights into functional polymer-based organic-inorganic nanocomposites as leather finishes. J. Leather Sci. Eng. 2019, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Ławińska, K.; Serweta, W.; Popovych, N.; Sieczyńska, K.; Decka, S.; Woźnicki, D.; Ogrodowczyk, D.; Rostocki, A.; Sprynskyy, M. Microbiological and chemical analysis of bamboo textile materials and leathers modified with bamboo extract at the tanning stage. Fibres Text. East. Eur. 2021, 29, 33–39. [Google Scholar] [CrossRef]
- Liu, G.; Haiqi, G.; Li, K.; Xiang, J.; Lan, T.; Zhang, Z. Fabrication of silver nanoparticle sponge leather with durable antibacterial property. J. Colloid Interface Sci. 2018, 514, 338–348. [Google Scholar] [CrossRef]
- Lkhagvajav, N.; Koizhaiganova, M.; Yasa, I.; Çelik, E.; Sari, Ö. Characterization and antimicrobial performance of nano silver coatings on leather materials. Braz. J. Microbiol. 2015, 46, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sportelli, M.C.; Picca, R.A.; Paladini, F.; Mangone, A.; Giannossa, L.C.; Di Franco, C.; Gallo, A.L.; Valentini, A.; Sannino, A.; Pollini, M. Spectroscopic characterization and nanosafety of Ag-modified antibacterial leather and leatherette. Nanomaterials 2017, 7, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou Elmaaty, T.; Sayed-Ahmed, K.; Mohamed Ali, R.; El-Khodary, K.; Abdeldayem, S.A. Simultaneous sonochemical coloration and antibacterial functionalization of leather with selenium nanoparticles (SeNPs). Polymers 2022, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Biškauskaitė, R.; Valeika, V. Wet Blue Enzymatic Treatment and Its Effect on Leather Properties and Post-Tanning Processes. Materials 2023, 16, 2301. [Google Scholar] [CrossRef]
- Thanikaivelan, P.; Rao, J.R.; Nair, B.U.; Ramasami, T. Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol. 2004, 22, 181–188. [Google Scholar] [CrossRef]
- Parisi, M.; Nanni, A.; Colonna, M. Recycling of Chrome-Tanned Leather and Its Utilization as Polymeric Materials and in Polymer-Based Composites: A Review. Polymers 2021, 13, 429. [Google Scholar] [CrossRef]
- Velmurugan, P.; Lee, S.-M.; Cho, M.; Park, J.-H.; Seo, S.-K.; Myung, H.; Bang, K.-S.; Oh, B.-T. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl. Microbiol. Biotechnol. 2014, 98, 8179–8189. [Google Scholar] [CrossRef]
- Elsayed, H.; Hasanin, M.; Rehan, M. Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs). J. Mol. Struct. 2021, 1234, 130130. [Google Scholar] [CrossRef]
- Xiang, J.; Ma, L.; Su, H.; Xiong, J.; Li, K.; Xia, Q.; Liu, G. Layer-by-layer assembly of antibacterial composite coating for leather with cross-link enhanced durability against laundry and abrasion. Appl. Surf. Sci. 2018, 458, 978–987. [Google Scholar] [CrossRef]
- Ara, K.; Hama, M.; Akiba, S.; Koike, K.; Okisaka, K.; Hagura, T.; Kamiya, T.; Tomita, F. Foot odor due to microbial metabolism and its control. Can. J. Microbiol. 2006, 52, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Kanlayavattanakul, M.; Lourith, N. Body malodours and their topical treatment agents. Int. J. Cosmet. Sci. 2011, 33, 298–311. [Google Scholar] [CrossRef]
- Lyu, B.; Chang, R.; Gao, D.; Ma, J. Chromium Footprint Reduction: Nanocomposites as Efficient Pretanning Agents for Cowhide Shoe Upper Leather. ACS Sustain. Chem. Eng. 2018, 6, 5413–5423. [Google Scholar] [CrossRef]
- Velmurugan, P.; Cho, M.; Lee, S.-M.; Park, J.-H.; Bae, S.; Oh, B.-T. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver. Carbohydr. Polym. 2014, 106, 319–325. [Google Scholar] [CrossRef]
- Velmurugan, P.; Shim, J.; Bang, K.-S.; Oh, B.-T. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity. J. Photochem. Photobiol. B 2016, 160, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Rohaeti, E.; Kasmudjiastuti, E.; Murti, R.; Dodi, I. Enhancement of antibacterial activity of suede leather through coating silver nanoparticles synthesized using Piper betle. Rasayan J. Chem. 2020, 13, 628–635. [Google Scholar] [CrossRef]
- Kate, S.; Sahasrabudhe, M.; Pethe, A. Biogenic Silver Nanoparticle Synthesis, Characterization and its Antibacterial activity against Leather Deteriorates. Jordan J. Biol. Sci. 2020, 13, 493–498. [Google Scholar]
- Koizhaiganova, M.; Yaşa, I.; Gülümser, G. Assessment of antibacterial activity of lining leather treated with silver doped hydroxyapatite. Int. Biodeterior. Biodegrad. 2015, 105, 262–267. [Google Scholar] [CrossRef]
- Abdelghany, T.M.; Al-Rajhi, A.M.H.; Al Abboud, M.A.; Alawlaqi, M.M.; Ganash Magdah, A.; Helmy, E.A.M.; Mabrouk, A.S. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. BioNanoScience 2018, 8, 5–16. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021, 19, 355–374. [Google Scholar] [CrossRef]
- Thi Lan Huong, V.; Nguyen, N.T. Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract. Mater. Today Proc. 2021, 42, 88–93. [Google Scholar] [CrossRef]
- Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cell. Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cell. Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Liu, J.-H. A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 2827–2833. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.-T.; Vo, T.-L.-H. Fabrication of Silver Nanoparticles Using Cordyline fruticosa L. Leave Extract Endowing Silk Fibroin Modified Viscose Fabric with Durable Antibacterial Property. Polymers 2022, 14, 2409. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arabian J. Chem. 2019, 12, 3576–3600. [Google Scholar] [CrossRef] [Green Version]
- Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Alduraihem, N.S.; Bhat, R.S.; Al-Zahrani, S.A.; Elnagar, D.M.; Alobaid, H.M.; Daghestani, M.H. Anticancer and Antimicrobial Activity of Silver Nanoparticles Synthesized from Pods of Acacia nilotica. Processes 2023, 11, 301. [Google Scholar] [CrossRef]
- Rizwana, H.; Alzahrani, T.; Alwahibi, M.S.; Aljowaie, R.M.; Aldehaish, H.A.; Alsaggabi, N.S.; Ramadan, R. Phytofabrication of Silver Nanoparticles and Their Potent Antifungal Activity against Phytopathogenic Fungi. Processes 2022, 10, 2558. [Google Scholar] [CrossRef]
- Shashiraj, K.N.; Nayaka, S.; Kumar, R.S.; Kantli, G.B.; Basavarajappa, D.S.; Gunagambhire, P.V.; Almansour, A.I.; Perumal, K. Rotheca serrata Flower Bud Extract Mediated Bio-Friendly Preparation of Silver Nanoparticles: Their Characterizations, Anticancer, and Apoptosis Inducing Ability against Pancreatic Ductal Adenocarcinoma Cell Line. Processes 2023, 11, 893. [Google Scholar] [CrossRef]
- Vu, T.H.; Bui, V.H.; Nguyen, N.T. Antibacterial Properties of Silver Nanoparticles Synthesized Using Piper betle L. Leaf Extract. Mater. Sci. Forum 2021, 1020, 236–242. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Vu, T.-H.; Bui, V.-H. Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper betle L. Leaf Extract. Polymers 2023, 15, 2634. [Google Scholar] [CrossRef]
- AATCC TM30; Test Method for Antifungal Activity, Assessment on Textile Materials: Mildew and Rot Resistance of Textile Materials. AATCC: Durham, NC, USA, 2017.
- AATCC TM90; Test Method for Antibacterial Activity of Textile Materials: Agar Plate. AATCC: Durham, NC, USA, 2016.
- ISO 16187:2013; Footwear and Footwear Components—Test Method to Assess Antibacterial Activity. ISO: Geneva, Switzerland, 2013.
- ISO 20882:2007; Footwear—Performance Requirements for Components for Footwear—Lining and Insocks. ISO: Geneva, Switzerland, 2007.
- Zhang, X.; Wang, W.; Yu, D. Synthesis of waterborne polyurethane–silver nanoparticle antibacterial coating for synthetic leather. J. Coat. Technol. Res. 2018, 15, 415–423. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Abd El Aty, A.A. In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. Int. J. Biol. Macromol. 2018, 118, 2121–2130. [Google Scholar] [CrossRef]
- Carvalho, I.; Lima, M.J.; Nobre, D.; Marques, S.M.; Castro, D.; Leite, T.R.; Henriques, M.; Duarte, F.; Ramalho, A.; Carvalho, S. Silver oxide coatings deposited on leathers to prevent diabetic foot infections. Surf. Coat. Technol. 2022, 442, 128338. [Google Scholar] [CrossRef]
- Varghese Alex, K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green Synthesized Ag Nanoparticles for Bio-Sensing and Photocatalytic Applications. ACS Omega 2020, 5, 13123–13129. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef] [Green Version]
- Almansob, A.; Bahkali, A.H.; Albarrag, A.; Alshomrani, M.; Binjomah, A.; Hailan, W.A.; Ameen, F. Effective treatment of resistant opportunistic fungi associated with immuno-compromised individuals using silver biosynthesized nanoparticles. Appl. Nanosci. 2022, 12, 3871–3882. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Lu, J.; Liu, N.; Lu, W.; Li, Y.; Shang, C.; Li, X.; Hu, L.; Jiang, G. Antiviral Properties of Silver Nanoparticles against SARS-CoV-2: Effects of Surface Coating and Particle Size. Nanomaterials 2022, 12, 990. [Google Scholar] [CrossRef]
Sample | AgPBL (μg/mL) | L* | a* | b* | ΔE* | Real Images |
---|---|---|---|---|---|---|
Le | 0 | 62.42 | 9.77 | 23.86 | 0 | |
iLeAg1/1 | 160 | 57.28 | 9.6 | 22.08 | 2.39 | |
iLeAg1/2 | 80 | 57.72 | 9.78 | 22.22 | 2.23 | |
iLeAg1/4 | 40 | 59.28 | 9.73 | 22.74 | 1.51 | |
iLeAg1/8 | 20 | 59.75 | 9.65 | 23.31 | 1.19 |
Sample | AgPBL (μg/mL) | Total Silver Content (mg/kg) |
---|---|---|
Le | 0 | 0 |
iLeAg1/1 | 160 | 513.3 ± 7.2 |
No | Properties | Unit | Le | iLeAg1/1 | ISO 20882:2007 Requirements |
---|---|---|---|---|---|
1 | Tear strength (ISO 17696) | N | 32 | 31.9 | lining ≥ 15 N |
Compared to the pristine leather (Le) | % | 100.0 | 99.7 | ||
Compared to ISO 20882:2007 | % | 213.3 | 212.7 | ||
2 | Abrasion resistance (ISO 17704) | cycles | Without hole through the thickness of the material component | 25,600 cycles dry 12,800 cycles wet | |
3 | Flex resistance (ISO 17694) | cycles | 15,000 cycles dry without visible damage | Dry 15,000 cycles without visible damage | |
4 | Lining water vapour permeability (ISO 17699) | mg/cm2·h | 3.13 | 3.56 | WVP of lining ≥ 2.0 mg/cm2·h |
Compared to the pristine leather (Le) | % | 100.0 | 113.7 | ||
Compared to ISO 20882:2007 | % | 156.0 | 178.0 | ||
5 | Lining water vapour absorption (ISO 17699) | mg/cm2 | 21.0 | 20.6 | WVA of lining ≥ 8.0 mg/cm2 |
Compared to the pristine leather (Le) | % | 100.0 | 98.1 | ||
Compared to ISO 20882:2007 | % | 263.0 | 257.5 | ||
6 | Lining water absorption (ISO 22649) | mg/cm2 | 54.1 | 53.6 | absorption ≥ 70 mg/cm2 |
Compared to the pristine leather (Le) | % | 100.0 | 99.1 | ||
Compared to ISO 20882:2007 | % | 90.1 | 89.0 | ||
7 | Lining water desorption (ISO 22649) | % | 97.1 | 96.8 | desorption ≥ 60% |
Compared to the pristine leather (Le) | % | 100.0 | 99.7 | ||
Compared to ISO 20882:2007 | % | 161.8 | 161.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.-T.; Vu, T.-H.; Bui, V.-H.; Phan, D.-N.; Nguyen, T.-H.; Nguyen, T.-M.-L. Investigation of the Antimicrobial and Physico-Mechanical Properties of Nature-Friendly Nanosilver-Loaded Pig Lining Leather Prepared Using Exhaustion Method. Processes 2023, 11, 1891. https://doi.org/10.3390/pr11071891
Nguyen N-T, Vu T-H, Bui V-H, Phan D-N, Nguyen T-H, Nguyen T-M-L. Investigation of the Antimicrobial and Physico-Mechanical Properties of Nature-Friendly Nanosilver-Loaded Pig Lining Leather Prepared Using Exhaustion Method. Processes. 2023; 11(7):1891. https://doi.org/10.3390/pr11071891
Chicago/Turabian StyleNguyen, Ngoc-Thang, Tien-Hieu Vu, Van-Huan Bui, Duy-Nam Phan, Thi-Hang Nguyen, and Thi-My-Linh Nguyen. 2023. "Investigation of the Antimicrobial and Physico-Mechanical Properties of Nature-Friendly Nanosilver-Loaded Pig Lining Leather Prepared Using Exhaustion Method" Processes 11, no. 7: 1891. https://doi.org/10.3390/pr11071891
APA StyleNguyen, N. -T., Vu, T. -H., Bui, V. -H., Phan, D. -N., Nguyen, T. -H., & Nguyen, T. -M. -L. (2023). Investigation of the Antimicrobial and Physico-Mechanical Properties of Nature-Friendly Nanosilver-Loaded Pig Lining Leather Prepared Using Exhaustion Method. Processes, 11(7), 1891. https://doi.org/10.3390/pr11071891