Cryogenic Fracture Proliferation from Boreholes under Stresses
Abstract
:1. Introduction
2. Laboratory Study
2.1. Devices and Procedure
2.2. Specimens
3. Results and Interpretations
3.1. Temperature and Pressure
3.2. Fracture Propagation
3.3. Effect of Stress
3.3.1. Loading Perpendicular to the Borehole Axis (Specimen A)
3.3.2. Loading Parallel to the Borehole Axis (Specimen B)
3.4. Effect of the Distribution of Surface Defects on Crack Initiation
3.5. Cryogenic Fracture vs. Hydraulic Fracture: Effect of Stress
3.6. Cooling Rate of the Borehole Surface
4. Discussions
4.1. Crack Spacing: Exclusion Distance
4.2. Fracture Tortuosity
4.3. Effect of Rock Types
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Yao, B.; Cha, M.; Alqahtani, N.B.; Patterson, T.W.; Kneafsey, T.J.; Miskimins, J.L.; Yin, X.; Wu, Y.-S. Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen. J. Nat. Gas Sci. Eng. 2016, 35 Pt A, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Liew, M.; Danyaro, K.U.; Zawawi, N.A.W.A. A comprehensive guide to different fracturing technologies: A review. Energies 2020, 13, 3326. [Google Scholar] [CrossRef]
- Nianyin, L.; Chao, W.; Suiwang, Z.; Jiajie, Y.; Yinhong, D. Recent advances in waterless fracturing technology for the petroleum industry: An overview. J. Nat. Gas Sci. Eng. 2021, 92, 103999. [Google Scholar] [CrossRef]
- Fu, C.; Liu, N. Waterless fluids in hydraulic fracturing–A review. J. Nat. Gas Sci. Eng. 2019, 67, 214–224. [Google Scholar] [CrossRef]
- Liu, J.; Xie, J.; Yang, B.; Li, F.; Deng, H.; Yang, Z.; Gao, M. Experimental Study on the Damage Characteristics and Acoustic Properties of Red Sandstone with Different Water Contents under Microwave Radiation. Materials 2023, 16, 979. [Google Scholar] [CrossRef]
- Tang, S.; Wang, J.; Chen, P. Theoretical and numerical studies of cryogenic fracturing induced by thermal shock for reservoir stimulation. Int. J. Rock Mech. Min. Sci. 2020, 125, 104160. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, S.; Yang, R.; Wu, X.; Li, R.; Zhang, H.; Hung, P. A review of liquid nitrogen fracturing technology. Fuel 2020, 266, 117040. [Google Scholar] [CrossRef]
- Cai, C.; Li, G.; Huang, Z.; Shen, Z.; Tian, S.; Wei, J. Experimental study of the effect of liquid nitrogen cooling on rock pore structure. J. Nat. Gas Sci. Eng. 2014, 21, 507–517. [Google Scholar] [CrossRef]
- Han, S.; Cheng, Y.; Gao, Q.; Yan, C.; Han, Z. Experimental study of the effect of liquid nitrogen pretreatment on shale fracability. J. Nat. Gas Sci. Eng. 2018, 60, 11–23. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Li, R.; Zhang, S.; Wen, H.; Huang, P.; Dai, X.; Zhang, C. Investigation on the damage of high-temperature shale subjected to liquid nitrogen cooling. J. Nat. Gas Sci. Eng. 2018, 57, 284–294. [Google Scholar] [CrossRef]
- Alqatahni, N.B.; Cha, M.; Yao, B.; Yin, X.; Kneafsey, T.J.; Wang, L.; Wu, Y.-S.; Miskimins, J.L. Experimental Investigation of Cryogenic Fracturing of Rock Specimens Under True Triaxial Confining Stresses. In Proceedings of the SPE Europec featured at 78th EAGE Conference and Exhibition, Vienna, Austria, 30 May 2016; p. 24. [Google Scholar]
- Elwegaa, K.; Emadi, H. The effect of thermal shocking with nitrogen gas on the porosities, permeabilities, and rock mechanical properties of unconventional reservoirs. Energies 2018, 11, 2131. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Gao, F.; Cai, C.; Su, S.; Wang, Z. Study on the surface crack propagation mechanism of coal and sandstone subjected to cryogenic cooling with liquid nitrogen. J. Nat. Gas Sci. Eng. 2020, 81, 103436. [Google Scholar] [CrossRef]
- Cha, M.; Yin, X.; Kneafsey, T.; Johanson, B.; Alqahtani, N.; Miskimins, J.; Patterson, T.; Wu, Y.-S. Cryogenic fracturing for reservoir stimulation—Laboratory studies. J. Pet. Sci. Eng. 2014, 124, 436–450. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Chunyang, H.; Huang, Z.; Wen, H.; Li, X.; Huang, P.; Liu, W.; Chen, J. Liquid Nitrogen Fracturing in Boreholes under True Triaxial Stresses: Laboratory Investigation on Fractures Initiation and Morphology. SPE J. 2021, 26, 135–154. [Google Scholar] [CrossRef]
- Jiang, L.; Cheng, Y.; Han, Z.; Gao, Q.; Yan, C.; Wang, H.; Fu, L. Effect of liquid nitrogen cooling on the permeability and mechanical characteristics of anisotropic shale. J. Pet. Explor. Prod. Technol. 2019, 9, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Cha, M.; Alqahtani, N.B.; Yao, B.; Yin, X.; Kneafsey, T.J.; Wang, L.; Wu, Y.-S.; Miskimins, J.L. Cryogenic Fracturing of Wellbores Under True Triaxial-Confining Stresses: Experimental Investigation. SPE J. 2018, 23, 1271–1289. [Google Scholar] [CrossRef] [Green Version]
- Cha, M.; Alqahtani, N.B.; Yin, X.; Wang, L.; Yao, B.; Kneafsey, T.J.; Miskimins, J.L.; Wu, Y.-S. Propagation of Cryogenic Thermal Fractures from Unconfined PMMA Boreholes. Energies 2021, 14, 5433. [Google Scholar] [CrossRef]
- Cha, M.; Alqahtani, N.B.; Yin, X.; Kneafsey, T.J.; Yao, B.; Wu, Y.-S. Laboratory system for studying cryogenic thermal rock fracturing for well stimulation. J. Pet. Sci. Eng. 2017, 156, 780–789. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Cha, M. Thermally induced fracturing in hot dry rock environments—Laboratory studies. Geothermics 2022, 106, 102569. [Google Scholar] [CrossRef]
- Gan, Q.; Elsworth, D.; Alpern, J.S.; Marone, C.; Connolly, P. Breakdown pressures due to infiltration and exclusion in finite length boreholes. J. Pet. Sci. Eng. 2015, 127, 329–337. [Google Scholar] [CrossRef]
- Khadraoui, S.; Hachemi, M.; Allal, A.; Rabiei, M.; Arabi, A.; Khodja, M.; Lebouachera, S.E.I.; Drouiche, N. Numerical and experimental investigation of hydraulic fracture using the synthesized PMMA. Polym. Bull. 2020, 78, 3803–3820. [Google Scholar] [CrossRef]
- Alpern, J.; Marone, C.; Elsworth, D.; Belmonte, A.; Connelly, P. Exploring the Physicochemical Processes That Govern Hydraulic Fracture Through Laboratory Experiments. In Proceedings of the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, 24–27 June 2012; p. 6. [Google Scholar]
- Zhang, C.; Zhou, Y.; Shao, T.; Xie, Q.; Xu, J.; Yang, W. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure. Appl. Surf. Sci. 2014, 311, 468–477. [Google Scholar] [CrossRef]
- Kinloch, A.J. Fracture Behaviour of Polymers; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yu, P.; Yao, X.; Tan, S.; Han, Q. A Macro-Damaged Viscoelastoplastic Model for Thermomechanical and Rate-Dependent Behavior of Glassy Polymers. Macromol. Mater. Eng. 2016, 301, 469–485. [Google Scholar] [CrossRef]
- Richeton, J.; Ahzi, S.; Vecchio, K.S.; Jiang, F.C.; Adharapurapu, R.R. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 2006, 43, 2318–2335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sun, Z.; Hu, X. Low temperature fracture toughness of PMMA and crack-tip conditions under flat-tipped cylindrical indenter. Polym. Test. 2014, 38, 57–63. [Google Scholar] [CrossRef]
- Bilotti, E.; Fenwick, O.; Schroeder, B.C.; Baxendale, M.; Taroni-Junior, P.; Degousée, T.; Liu, Z. 6.14 Organic Thermoelectric Composites Materials. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 408–430. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128035818100244 (accessed on 6 June 2023).
- Esposito, M.; Buontempo, S.; Petriccione, A.; Zarrelli, M.; Breglio, G.; Saccomanno, A.; Szillasi, Z.; Makovec, A.; Cusano, A.; Chiuchiolo, A.; et al. Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures. Sens. Actuators A Phys. 2013, 189, 195–203. [Google Scholar] [CrossRef]
- Nguyen, D.; Phan, T.; Hsu, T.-P.; Phan, J. Adhesion and surface energy of shale rocks. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 712–721. [Google Scholar] [CrossRef]
- Taghichian, A.; Hashemalhoseini, H.; Zaman, M.; Yang, Z.-Y. Geomechanical optimization of hydraulic fracturing in unconventional reservoirs: A semi-analytical approach. Int. J. Fract. 2018, 213, 107–138. [Google Scholar] [CrossRef]
- Griffith, A.A., VI. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1921, 221, 163–198. [Google Scholar]
- Irwin, G.R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 1957, 24, 361–364. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Liu, L.; Li, L.; Elsworth, D.; Zhi, S.; Yu, Y. The impact of oriented perforations on fracture propagation and complexity in hydraulic fracturing. Processes 2018, 6, 213. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Tang, S. Numerical study of near-wellbore hydraulic fracture propagation. Theor. Appl. Fract. Mech. 2019, 103, 102274. [Google Scholar] [CrossRef]
- Feng, Y.; Gray, K. Modeling of curving hydraulic fracture propagation from a wellbore in a poroelastic medium. J. Nat. Gas Sci. Eng. 2018, 53, 83–93. [Google Scholar] [CrossRef]
- Xi, X.; Yang, S.; Shipton, Z.; Cai, M. Modelling the near-wellbore rock fracture tortuosity: Role of casing-cement-rock well system, perforation and in-situ stress. Int. J. Rock Mech. Min. Sci. 2022, 157, 105182. [Google Scholar] [CrossRef]
- Kruse, C.; Anderson, T.; Wilson, C.; Zuhlke, C.; Alexander, D.; Gogos, G.; Ndao, S. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir 2013, 29, 9798–9806. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-m.; Bird, J.C.; Varanasi, K.K. Increasing Leidenfrost point using micro-nano hierarchical surface structures. Appl. Phys. Lett. 2013, 103, 201601. [Google Scholar] [CrossRef] [Green Version]
- Weickgenannt, C.M.; Zhang, Y.; Sinha-Ray, S.; Roisman, I.V.; Gambaryan-Roisman, T.; Tropea, C.; Yarin, A.L. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Phys. Rev. E 2011, 84, 036310. [Google Scholar] [CrossRef] [Green Version]
- Vakarelski, I.U.; Patankar, N.A.; Marston, J.O.; Chan, D.Y.; Thoroddsen, S.T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 2012, 489, 274–277. [Google Scholar] [CrossRef]
- Arnaldo del Cerro, D.; Marin, A.G.; Römer, G.R.; Pathiraj, B.; Lohse, D.; Huis in’t Veld, A.J. Leidenfrost point reduction on micropatterned metallic surfaces. Langmuir 2012, 28, 15106–15110. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, Z. Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale 2017, 9, 6219–6236. [Google Scholar] [CrossRef]
- Kim, H.; Truong, B.; Buongiorno, J.; Hu, L.-W. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Appl. Phys. Lett. 2011, 98, 083121. [Google Scholar] [CrossRef]
- Bourdin, B.; Marigo, J.-J.; Maurini, C.; Sicsic, P. Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks. Phys. Rev. Lett. 2014, 112, 014301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.R. Determination of crack spacing and penetration due to shrinkage of a solidifying layer. Int. J. Solids Struct. 2009, 46, 1078–1084. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.P.; Wu, X.F.; Li, J.; Song, F.; Shao, Y.F.; Xu, X.H.; Yan, P. A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Mater. 2012, 60, 4540–4550. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.R. Optimal spacing and penetration of cracks in a shrinking slab. Phys. Rev. E 2005, 71, 056117. [Google Scholar] [CrossRef]
- Amarasiri, A.L.; Kodikara, J.K. Effect of characteristic lengths of fracture on thermal crack patterns. Int. J. Geomech. 2015, 15, 04014071. [Google Scholar] [CrossRef]
- Sumi, Y.; Mu, Y. Thermally induced quasi-static wavy crack propagation in a brittle solid. Mech. Mater. 2000, 32, 531–542. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Kou, M. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks. Eur. J. Mech.-A/Solids 2019, 73, 282–305. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, Y.; Xu, X.; Zhou, Z.; Li, W.; Liu, B. Effect of crack pattern on the residual strength of ceramics after quenching. J. Am. Ceram. Soc. 2011, 94, 2804–2807. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Lin, Z.; Sheng, S.; Yuan, W. Evolution mechanisms of thermal shock cracks in ceramic sheet. J. Appl. Mech. 2016, 83, 071001. [Google Scholar] [CrossRef] [Green Version]
- Weijermars, R.; Wang, J. Stress Reversals near Hydraulically Fractured Wells Explained with Linear Superposition Method (LSM). Energies 2021, 14, 3256. [Google Scholar] [CrossRef]
- Weijermars, R. Stress cages and fracture cages in stress trajectory models of wellbores: Implications for pressure management during drilling and hydraulic fracturing. J. Nat. Gas Sci. Eng. 2016, 36, 986–1003. [Google Scholar] [CrossRef]
Stress Direction | Stress Magnitude | Borehole Surface | |
---|---|---|---|
Specimen A | Perpendicular to the borehole axis | 101 kPa (average) 191 kPa (peak) (P = 2.35 kN) | Rough |
Specimen B | Parallel to the borehole axis | 6.9 MPa | Rough |
Specimen C | Parallel to the borehole axis | 3.45 MPa | Rough (upper part) Smooth (lower part) |
Properties | PMMA (a) | PMMA (Low-T) (b) | Shale (c) |
---|---|---|---|
Density (g/cm3) | 1.18–1.19 | - | 2.39 |
Unconfined compressive strength (MPa) | 90–120 | 250 (−40 °C) | 54.6 |
Tensile strength (MPa) | 55–76 | 100–110 (−40 °C) | 8.48 (Splitting) |
Static Young’s modulus (GPa) | 2.4–3.3 | 5.1 (−173 °C) | 41.4 |
Surface energy (dyn/cm) | 41 | - | 46.6 |
Fracture toughness KIC (MPa·m0.5) | ~1.5 | 0.59–0.96 (−80 °C) | 1.5 |
Poisson’s ratio | 0.35–0.4 | - | 0.27 |
Specific heat capacity (J/(kg·K)) | 1450 | 450 (−196 °C) | 990 |
Thermal conductivity (W/(m·K)) | 0.18–0.19 | 0.14 (−196 °C) | |
Linear thermal expansion coeff. (K−1) | (60–80) × 10−6 | 26 × 10−6 (−196 °C) | 11 × 10–6 |
Liquid nitrogen (d) | Gas nitrogen (e) | Water (e) | |
Viscosity (cP) | 0.158 | 1.76 × 10−2 | 1.002 |
Density (g/mL) | 0.807 | 0.0012 | 0.998 |
Surface tension (dyn/cm) (against air) | 8.85 | - | 72.8 |
Specific heat (kJ/(kg∙K)) | 2.04 | 1.04 | 4.18 |
Thermal conductivity (W/(m∙K)) | 0.140 | 0.025 | 0.591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, M.; Alqahtani, N.B.; Wang, L. Cryogenic Fracture Proliferation from Boreholes under Stresses. Processes 2023, 11, 2028. https://doi.org/10.3390/pr11072028
Cha M, Alqahtani NB, Wang L. Cryogenic Fracture Proliferation from Boreholes under Stresses. Processes. 2023; 11(7):2028. https://doi.org/10.3390/pr11072028
Chicago/Turabian StyleCha, Minsu, Naif B. Alqahtani, and Lei Wang. 2023. "Cryogenic Fracture Proliferation from Boreholes under Stresses" Processes 11, no. 7: 2028. https://doi.org/10.3390/pr11072028
APA StyleCha, M., Alqahtani, N. B., & Wang, L. (2023). Cryogenic Fracture Proliferation from Boreholes under Stresses. Processes, 11(7), 2028. https://doi.org/10.3390/pr11072028