Pecan Biomass and Dairy Manure Utilization: Compost Treatment and Soil In-Situ Comparisons of Selected Pecan Crop and Soil Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Standard On-Farm Practices
2.2. Compost Production and Compost Sampling
Treatment | Substrates and Quantities (Volume %) | Windrow Processing Procedures |
---|---|---|
PM | Pecan tree biomass (P): 129 m3 (83%) | Weekly turning and watering |
Manure (M): 27 m3 (17%) | ||
PM/A | Pecan tree biomass: 126 m3 (50%) | One-time clay application Daily turning and watering Weekly combining Daily edge cleaning |
Manure: 38 m3 (15%) | ||
Landscaping residues (A): 38 m3 (15%) | ||
Compost, unfinished (A): 25 m3 (10%) | ||
Clay (A): 25 m3 (10%) | ||
PMG/A | Pecan tree biomass: 61 m3 (31%) | One-time clay application Daily turning and watering Weekly combining Daily edge cleaning |
Manure: 15 m3 (8%) | ||
Compost, unfinished: 15 m3 (8%) | ||
Clay: 15 m3 (8%) | ||
Green chop (G): 90 m3 (46%) |
2.3. Experimental Design and Soil Sampling Procedures
2.4. Soil and Compost Characterization
2.5. Pecan Tree Leaf Nutrition and Photosynthesis Assessments
2.6. Statistical Analysis
3. Results
3.1. Compost Properties
3.2. Effects of Amendments on Soil Properties
3.3. Effects of Amendments on Plant Properties
4. Discussion
4.1. Soil Amendment Quality Impacts and Decision Factors
4.2. Limitations of Short-Term Studies and Leaf Measurements for Orchard Management Decision-Making
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Bon, H.; Parrot, L.; Moustier, P. Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 2010, 30, 21–32. [Google Scholar] [CrossRef]
- NMED Water Program. Water Resources & Management; Springer: Cham, Switzerland, 2019. Available online: https://www.env.nm.gov/water/ (accessed on 1 October 2021).
- Cabrera, V.; Hagevoort, R.G. Importance of the New Mexico Dairy Industry. CR 613. College of Agricultural, Consumer and Environmental Sciences, New Mexico State University. 2018. Available online: https://aces.nmsu.edu/pubs/_circulars/CR613/welcome.html (accessed on 1 October 2021).
- NRCS Healthy Soil for Life, United States Department of Agriculture. 2020. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 16 April 2021).
- Martinez-Blanco, J.; Lazcano, C.; Christensen, T.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef]
- Sullivan, D.; Bary, A.I.; Miller, R.O.; Brewer, L.J. Interpreting Compost Analyses. EM 9217, Oregon State University Extension Service. 2018. Available online: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/em9217.pdf (accessed on 20 April 2021).
- Weil, R.; Magdoff, F. Significance of Soil Organic Matter to Soil Quality and Health. In Soil Organic Matter in Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Scaringelli, M.A.; Giannoccaro, G.; Prosperi, M.; Lopolito, A. Adoption of Biodegradable Mulching Films in Agriculture: Is There a Negative Prejudice Towards Materials Derived from Organic Wastes? Ital. J. Agron. 2016, 11, 92–99. [Google Scholar] [CrossRef]
- Zougmoréa, R.; Mando, A.; Stroosnijder, L. Effect of soil and water conservation and nutrient management on the soil–plant water balance in semi-arid Burkina Faso. Agric. Water Manag. 2004, 65, 103–120. [Google Scholar] [CrossRef]
- US Composting Council. Sample Collection and Laboratory Preparation, Test Methods for the Examination of Composting and Compost. 2001. Available online: https://www.compostingcouncil.org/page/CompostManufacturersSTA (accessed on 4 March 2021).
- Kallestad, J.; Mexal, J.; Ted, W.S. Mesilla Valley Pecan Orchard Pruning Residues: Biomass Estimates and Value-Added Opportunities; Research Report 764; New Mexico State University, Agricultural Experiment Station: Las Cruces, NM, USA, 2008. [Google Scholar]
- Wells, M.L. Pecan tree productivity, fruit quality, and nutrient element status using clover and poultry litter as alternative nitrogen fertilizer sources. HortScience 2012, 47, 927–931. [Google Scholar] [CrossRef]
- Fourth National Climate Assessment, Volume II. Global Change Research Program Impacts, Risks, and Adaptation in the United States, Agriculture and Rural Communities. 2018. Available online: https://nca2018.globalchange.gov/downloads/NCA4_Ch10_Agriculture_ExecSum.pdf (accessed on 10 October 2021).
- McHenry, M.P. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric. Ecosyst. Environ. 2008, 129, 1–7. [Google Scholar] [CrossRef]
- Sánchez-García, M.; Sánchez-Monedero, M.A.; Roig, A.; López-Cano, I.; Moreno, B.; Benitez, E.; Cayuela, M.L. Compost vs biochar amendment: A two-year field study evaluating soil C build-up and N dynamics in an organically managed olive crop. Plant Soil 2016, 408, 1–14. [Google Scholar] [CrossRef]
- Pelegrín, M.; Sáez-Tovar, J.A.; Andreu-Rodríguez, J.; Pérez-Murcia, M.D.; Martínez-Sabater, E.; Marhuenda-Egea, F.C.; Pérez-Espinosa, A.; Bustamante, M.A.; Agulló, E.; Vico, A.; et al. Composting of the invasive species Arundo donax with sewage and agri-food sludge: Agronomic, economic and environmental aspects. Waste Manag. 2018, 78, 730–740. [Google Scholar] [CrossRef]
- US Composting Council Test Methods and Parameters. USCC. Field Guide to Compost Use. 2017. Available online: https://www.compostingcouncil.org/page/ProduceCompost (accessed on 5 March 2022).
- Rattan, L. Feature: Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef]
- US Climate Data. Climate Roswell-New Mexico. 2020. Available online: https://www.usclimatedata.com/climate/roswell/new-mexico/united-states/usnm0267 (accessed on 3 March 2021).
- Soil Survey, National Cooperative, USA. LOCATION REAKOR. NM+TX Established Series Rev. MVH/BDS/LWH/WWJ 02/2007. 2018. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/R/REAKOR.html (accessed on 2 February 2021).
- Creegan, E.F.; Flynn, R.; Brewer, C.E.; Acharya, R.; Darapuneni, M.; Velasco-Cruz, C.; VanLeeuwen, D. Pecan (Carya illinoinensis) and dairy waste stream utilization: Properties and economics of on-farm windrow systems. Sustainability 2022, 14, 2550. [Google Scholar] [CrossRef]
- Gavlak, R.G.; Horneck, D.A.; Miller, R.O. Plant, Soil and Water Reference Methods for the Western Region (1994). PMS Instrument Company. 2018. Available online: https://www.pmsinstrument.com/resources/measuring-stem-water-potential-swp (accessed on 3 December 2021).
- Li, X.L.; George, E.; Marschner, H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 1991, 136, 41–48. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Book Series; ASA: Schaumburg, IL, USA; CSSA: Long Beach, CA, USA; SSSA: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Levanon, D.; Pluda, D. Chemical, physical and biological criteria for maturity in composts for organic farming. Compost. Sci. Util. 2002, 10, 339–346. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Gavlak, R.; Horneck, D.; Miller, R.O. Soil, Plant and Water Reference Methods for the Western Region. 2005. Available online: https://www.naptprogram.org/files/napt/western-states-method-manual-2005.pdf (accessed on 30 March 2023).
- Kato, K.; Miura, N. Effect of matured compost as a bulking and inoculating agent on the microbial community and maturity of cattle manure compost. Bioresour. Technol. 2008, 99, 3372–3380. [Google Scholar] [CrossRef] [PubMed]
- Heerema, R. Diagnosing Nutrient Disorders of New Mexico Pecan Trees. Guide H-658. College of Agricultural, Consumer and Environmental Sciences, New Mexico State University. 2013. Available online: https://aces.nmsu.edu/pubs/_h//H658/welcome.html (accessed on 7 November 2021).
- McKenzie, N.J.; Jacquier, D.J.; Isbell, R.F.; Brown, K.L. Australian Soils and Landscapes an Illustrated Compendium; CSIRO Publishing: Collingwood, VIC, Australia, 2004. [Google Scholar] [CrossRef]
- The University of Arizona. Manure Use and Management. Salt Content. 2000. Available online: https://cals.arizona.edu/animalwaste/farmasyst/awfact8.html#salt (accessed on 27 March 2021).
- Pavlova, M. Effects of Residual Biomass Use in Agriculture. Trakia J. Sci. 2017, 15, 330–337. [Google Scholar] [CrossRef]
- Idrovo-Novillo, J.; Gavilanes-Teraán, I.; Angeles Bustamante, M.; Paredes, C. Composting as a method to recycle renewable plant resources back to the ornamental plant industry: Agronomic and economic assessment of composts. Process Saf. Environ. Prot. 2018, 116 Pt B, 388–395. [Google Scholar] [CrossRef]
- Heerema, R.; Goldberg, N.; Thomas, S. Diseases and Other Disorders of Pecan in New Mexico. Guide H-657 College of Agricultural, Consumer and Environmental Sciences, New Mexico State University. 2010. Available online: https://aces.nmsu.edu/pubs/_h/H657/welcome.html (accessed on 15 November 2021).
- Billah, M.; Bano, A.; Gurmani, A.R.; Hassan, T.U.; Khan, M.; Munir, A. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 2019, 36, 904–916. [Google Scholar] [CrossRef]
- Lepsch, H.C.; Brown, P.H.; Peterson, C.A.; Gaudin, A.C.M.; Khalsa, S.D.S. Impact of organic matter amendments on soil and tree water status in a California orchard. Agric. Water Manag. 2019, 222, 204–212. [Google Scholar] [CrossRef]
- Li, R.; Zhi, Z.; Wang, H. Influence of carbon/nitrogen ratio on the anaerobic fermentative hydrogen production with cow dung compost. J. Renew. Sustain. Energy 2014, 6, 033139. [Google Scholar] [CrossRef]
- Xu, Z.; Li, G.; Huda, N.; Zhang, B.; Wang, M.; Luo, W. Effects of moisture and carbon/nitrogen ratio on gaseous emissions and maturity during direct composting of cornstalks used for filtration of anaerobically digested manure centrate. Bioresour. Technol. 2020, 298, 122503. [Google Scholar] [CrossRef] [PubMed]
Property | PM | PM/A | PMG/A |
---|---|---|---|
Total Kjeldahl N (mg/kg) | 12782 | 5508 | 7666 |
Nitrate-N (mg/kg) | 10.45 | 813.2 | 1279 |
Phosphorus (mg/kg) | 536.9 a | 414.9 b | 350.8 b |
K (mg/kg) | 4722 a | 2018 b | 2365 b |
Ca (mg/kg) | 49.50 a | 34.60 b | 21.73 c |
Mg (mg/kg) | 37.77 a | 23.67 b | 11.66 c |
Fe (mg/kg) | 13.85 | 16.57 | 10.13 |
Mn (mg/kg) | 24.53 b | 17.13 c | 29.07 a |
Zn (mg/kg) | 25.29 a | 16.67 b | 20.00 b |
Cu (mg/kg) | 3.31 a | 2.31 b | 2.24 b |
Electrical conductivity (dS/m) | 16.93 a | 12.54 b | 11.38 b |
Sodium adsorption ratio (meq/L) | 6.54 b | 9.02 a | 6.68 b |
Na (meq/L) | 43.13 a | 48.77 a | 27.33 b |
pH | 7.63 | 7.73 | 7.67 |
Organic matter (%) | 24.30 | 13.38 | 20.31 |
Organic carbon (%) | 14.14 f | 7.78 | 11.81 |
Bulk density (g/cm3) | 0.44 c | 0.63 a | 0.51 b |
Microbial diversity index | 1.30 | 1.33 | 1.37 |
Total microbial biomass | 12860 a | 4908 c | 8208 b |
Volumetric water content (%) | 32.92 | 37.06 | 24.06 |
Soil Property | PM Compost Pre | PM Compost Post | PM/A Compost Pre | PM/A Compost Post | PMG/A Compost Pre | PMG/A Compost Post | Standard Practice Pre | Standard Practice Post |
---|---|---|---|---|---|---|---|---|
pH | 7.8 | 7.7 | 7.8 | 7.7 | 7.8 | 7.8 | 7.7 | 7.8 |
EC (dS/m) | 0.78 | 1.68 b | 0.81 | 1.73 b | 0.73 | 1.81 b | 1.43 | 3.70 a |
SAR | 1.62 | 1.96 | 1.63 | 2.06 | 1.63 | 1.80 | 1.42 | 1.55 |
Na (meq/L) | 2.91 | 4.53 | 2.99 | 4.99 | 2.87 | 4.56 | 3.59 | 6.01 |
Mg (meq/L) | 1.98 | 3.39 b | 2.45 | 3.76 b | 1.90 | 4.01 b | 2.33 | 8.93 a |
Ca (meq/L) | 4.46 | 7.10 b | 5.96 | 8.05 b | 4.35 | 11.09 b | 6.13 | 27.0 a |
Zn (mg/kg) | 1.98 | 2.23 a | 1.53 | 1.77 ab | 2.26 | 1.41 ab | 1.83 | 1.30 b |
Mn (mg/kg) | 5.8 | 35 | 7.1 | 33 | 7.0 | 25 | 6.5 | 26 |
Fe (mg/kg) | 3.8 | 33.7 | 5.8 | 29.6 | 5.0 | 19.5 | 6.3 | 25.9 |
Cu (mg/kg) | 0.71 | 1.21 | 0.78 | 1.31 | 0.91 | 1.22 | 0.81 | 1.30 |
Organic matter (%) | 1.75 | 2.14 a | 1.46 | 2.04 ab | 1.51 | 1.86 ab | 1.58 | 1.36 b |
Organic carbon (%) | 1.02 | 1.24 a | 0.85 | 1.18 a | 0.88 | 1.08 ab | 0.92 | 0.70 b |
TKN (mg/kg) | 1031 | 1181 a | 1026 | 1007 ab | 869 | 863 b | 913 | 883 b |
Nitrate-N (mg/kg) | 2.5 | 8.2 | 2.4 | 7.3 | 3.1 | 8.1 | 5.1 | 6.7 |
Phosphorus (mg/kg) | 5.5 | 25.8 a | 7.2 | 13.3 b | 8.3 | 18.5 ab | 10.3 | 23.6 a |
K (mg/kg) | 30 | 51 | 30 | 53 | 34 | 86 | 49 | 200 |
Soil Property | PM Compost Pre | PM Compost Post | PM/A Compost Pre | PM/A Compost Post | PMG/A Compost Pre | PMG/A Compost Post | Standard Practice Pre | Standard Practice Post |
---|---|---|---|---|---|---|---|---|
pH | 7.7 | 7.7 | 7.7 | 7.7 | 7.8 | 7.8 | 7.7 | 7.7 |
EC (dS/m) | 1.16 | 1.62 | 1.34 | 1.51 | 1.2 | 1.61 | 1.94 | 2.83 |
SAR | 4.48 | 4.41 | 4.87 | 4.61 | 4.61 | 4.41 | 5.36 | 6.4 |
Na (meq/L) | 2.05 | 1.96 | 2.07 | 2.04 | 2.08 | 1.92 | 1.96 | 1.97 |
Mg (meq/L) | 0.85 | 0.86 | 0.92 | 0.71 | 0.78 | 0.59 | 1.15 | 0.62 |
Ca (meq/L) | 5.8 | 43 a | 5.2 | 42 a | 5.6 | 28 b | 5.5 | 28 b |
Zn (mg/kg) | 2.69 | 3.09 | 4.19 | 3.13 | 2.8 | 3.07 | 2.87 | 6.04 |
Mn (mg/kg) | 6.9 | 7.1 | 11 | 7.1 | 7.0 | 8.0 | 8.2 | 16.9 |
Fe (mg/kg) | 3.5 | 43.5 | 3.9 | 43.3 | 4.0 | 25 | 4.9 | 25.9 |
Cu (mg/kg) | 0.84 | 1.15 | 0.94 | 1.17 | 0.92 | 1.16 | 0.97 | 1.26 |
Organic matter (%) | 1.14 | 1.52 | 0.86 | 0.91 | 1.04 | 1.25 | 1.06 | 1.01 |
Organic carbon (%) | 0.66 | 0.88 | 0.50 | 0.53 | 0.60 | 0.72 | 0.62 | 0.51 |
TKN (mg/kg) | 619 | 932 | 555 | 734 | 619 | 758 | 596 | 673 |
Nitrate-N (mg/kg) | 3.4 | 5.2 | 3.2 | 5.1 | 3.0 | 4.4 | 2.8 | 5.0 |
Phosphorus (mg/kg) | 1.8 | 12.0 ab | 2.43 | 7.3 b | 4.8 | 10.0 ab | 4.0 | 13.4 a |
K (mg/kg) | 35 | 46 | 45 | 33 | 48 | 76 | 61 | 191 |
Soil Property | PM Compost Pre | PM Compost Post | PM/A Compost Pre | PM/A Compost Post | PMG/A Compost Pre | PMG/A Compost Post | Standard Practice Pre | Standard Practice Post |
---|---|---|---|---|---|---|---|---|
pH | 7.8 | 7.8 | 7.7 | 7.8 | 7.8 | 7.8 | 7.7 | 7.8 |
EC (dS/m) | 1.73 | 1.61 | 1.76 | 1.54 | 2.11 | 1.92 | 2.26 | 2.70 |
SAR | 5.81 | 4.34 | 6.25 | 4.81 | 7.06 | 5.19 | 6.92 | 6.56 |
Na (meq/L) | 2.14 | 1.96 | 2.14 | 2.09 | 2.43 | 1.96 | 2.18 | 2.17 |
Mg (meq/L) | 0.54 | 0.75 | 0.45 | 0.35 | 0.76 | 0.35 | 1.00 | 0.38 |
Ca (meq/L) | 4.1 | 37 | 3.5 | 32 | 4.0 | 30 | 4.0 | 30 |
Zn (mg/kg) | 4.07 | 2.92 | 6.03 | 3.11 | 4.75 | 3.92 | 4.14 | 5.18 |
Mn (mg/kg) | 10.6 | 6.9 | 15.4 | 7.5 | 11.7 | 10.7 | 11.3 | 14.2 |
Fe (mg/kg) | 3.5 | 41.1 | 3.0 | 36.2 | 3.7 | 30.4 | 3.7 | 35.7 |
Cu (mg/kg) | 0.83 | 1.18 | 0.75 | 1.10 | 0.87 | 1.20 | 0.87 | 1.21 |
Organic matter (%) | 0.86 | 1.11 | 0.69 | 0.63 | 0.87 | 0.71 | 1.04 | 0.62 |
Organic carbon (%) | 0.50 | 0.64 | 0.40 | 0.37 | 0.50 | 0.41 | 0.61 | 0.31 |
TKN (mg/kg) | 474 | 707 | 446 | 598 | 463 | 548 | 461 | 624 |
Nitrate-N (mg/kg) | 5.5 | 5.0 | 5.4 | 4.7 | 5.4 | 3.9 | 4.8 | 5.1 |
Phosphorus (mg/kg) | 3.1 | 11.0 a | 2.4 | 5.3 b | 5.0 | 7.3 ab | 4.0 | 10.2 ab |
K (mg/kg) | 29 | 42 | 42 | 25 | 54 | 78 | 79 | 204 |
Leaf Property | PM Compost Year 1 | PM Compost Year 2 | PM/A Compost Year 1 | PM/A Compost Year 2 | PMG/A Compost Year 1 | PMG/A Compost Year 2 | Standard Practice Year 1 | Standard Practice Year 2 |
---|---|---|---|---|---|---|---|---|
SWP (bar) | 8.2 | 9.6 | 7.8 | 9.8 | 8.4 | 10.0 | 8.4 | 8.9 |
SPAD (nm) | 46.8 | 47.0 | 46.6 | 47.3 | 46.7 | 46.4 | 46.3 | 47.4 |
Fe (mg/kg) | 787 | 80 | 82 | 86 | 115 | 87 | 496 | 76 |
Mn (mg/kg) | 79 | 94 | 72 | 97 | 69 | 83 | 76 | 95 |
Ni (mg/kg) | 1.4 | 1.5 | 1.2 | 1.3 | 1.0 | 1.4 | 1.4 | 1.6 |
Zn (mg/kg) | 14 | 43 | 16 | 49 | 29 | 49 | 14 | 40 |
Phosphorus (mg/kg) | 1054 | 1070 | 1067 | 1050 | 1079 | 1015 | 1106 | 1075 |
K (mg/kg) | 8264 | 8890 | 8515 | 9046 | 9058 | 8677 | 8729 | 9393 |
Na (mg/kg) | 84 | 74 | 62 | 122 | 62 | 103 | 86 | 102 |
TKN (%) | 2.2 | 1.8 | 2.3 | 2.0 | 2.2 | 1.9 | 2.3 | 2.2 |
Phosphorus (mg/kg) | K (mg/kg) | |
---|---|---|
“Optimal” Ranges | 1400–1900 | 12,000–25,000 |
PM Compost | 1050–1070 | 8300–8900 |
PM/A Compost | 1050–1070 | 8500–9000 |
PMG/A Compost | 1020–1080 | 8600–9000 |
Standard Practice | 1070–1100 | 8700–9400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Creegan, E.F.; Flynn, R.; Brewer, C.E.; Heerema, R.J.; Darapuneni, M.; Velasco-Cruz, C. Pecan Biomass and Dairy Manure Utilization: Compost Treatment and Soil In-Situ Comparisons of Selected Pecan Crop and Soil Variables. Processes 2023, 11, 2046. https://doi.org/10.3390/pr11072046
Creegan EF, Flynn R, Brewer CE, Heerema RJ, Darapuneni M, Velasco-Cruz C. Pecan Biomass and Dairy Manure Utilization: Compost Treatment and Soil In-Situ Comparisons of Selected Pecan Crop and Soil Variables. Processes. 2023; 11(7):2046. https://doi.org/10.3390/pr11072046
Chicago/Turabian StyleCreegan, Emily F., Robert Flynn, Catherine E. Brewer, Richard J. Heerema, Murali Darapuneni, and Ciro Velasco-Cruz. 2023. "Pecan Biomass and Dairy Manure Utilization: Compost Treatment and Soil In-Situ Comparisons of Selected Pecan Crop and Soil Variables" Processes 11, no. 7: 2046. https://doi.org/10.3390/pr11072046
APA StyleCreegan, E. F., Flynn, R., Brewer, C. E., Heerema, R. J., Darapuneni, M., & Velasco-Cruz, C. (2023). Pecan Biomass and Dairy Manure Utilization: Compost Treatment and Soil In-Situ Comparisons of Selected Pecan Crop and Soil Variables. Processes, 11(7), 2046. https://doi.org/10.3390/pr11072046