Dried Droplets of Diluted Blood to Detect a High Concentration of Lipids
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Collection and Storage
2.2. Drop Evaporation
2.3. Image Acquisition
2.4. Texture Analysis of Dried Drop Patterns
Gray Level Co-Occurrence Matrix (GLCM)
2.5. The Receiver Operating Characteristic (ROC) Curve
3. Results
3.1. Pattern Formation in Dried Blood Drops
3.2. Texture Analysis of Dried Blood Droplets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yakhno, T.; Pakhomov, A.; Sanin, A.; Kazakov, V.; Ginoyan, R.; Yakhno, V. Drop drying on the sensor: One more way for comparative analysis of liquid media. Sensors 2020, 20, 5266. [Google Scholar] [CrossRef]
- Gulka, C.P.; Swartz, J.D.; Trantum, J.R.; Davis, K.M.; Peak, C.M.; Denton, A.J.; Haselton, F.R.; Wright, D.W. Coffee rings as low-resource diagnostics: Detection of the malaria biomarker plasmodium falciparum histidine-rich protein-ii using a surface-coupled ring of ni (ii) nta gold-plated polystyrene particles. ACS Appl. Mater. Interfaces 2014, 6, 6257–6263. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.T.; Ho, C.M.; Lillehoj, P.B. Coffee ring aptasensor for rapid protein detection. Langmuir 2013, 29, 8440–8446. [Google Scholar] [CrossRef]
- Trantum, J.R.; Wright, D.W.; Haselton, F.R. Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator. Langmuir 2012, 28, 2187–2193. [Google Scholar] [CrossRef]
- Kim, J.; Dowling, V.; Datta, T.; Pershin, Y.V. Whisky-born memristor. Phys. Status Solidi (a) 2022, 220, 2200643. [Google Scholar] [CrossRef]
- Carreón, Y.J.; Díaz-Hernández, O.; Escalera Santos, G.J.; Cipriano-Urbano, I.; Solorio-Ordaz, F.J.; González-Gutiérrez, J.; Zenit, R. Texture Analysis of Dried Droplets for the Quality Control of Medicines. Sensors 2021, 21, 4048. [Google Scholar] [CrossRef]
- González-Gutiérrez, J.; Pérez-Isidoro, R.; Ruiz-Suárez, J. A technique based on droplet evaporation to recognize alcoholic drinks. Rev. Sci. Instruments 2017, 88, 074101. [Google Scholar] [CrossRef] [PubMed]
- Carrithers, A.D.; Brown, M.J.; Rashed, M.Z.; Islam, S.; Velev, O.D.; Williams, S.J. Multiscale self-assembly of distinctive weblike structures from evaporated drops of dilute american whiskeys. ACS Nano 2020, 14, 5417–5425. [Google Scholar] [CrossRef] [PubMed]
- Peschel, O.; Kunz, S.; Rothschild, M.; Mützel, E. Blood stain pattern analysis. Forensic Sci. Med. Pathol. 2011, 7, 257–270. [Google Scholar] [CrossRef]
- Wang, F.; Gallardo, V.; Michielsen, S.; Fang, T. Fundamental study of porcine drip bloodstains on fabrics: Blood droplet impact and wicking dynamics. Forensic Sci. Int. 2021, 318, 110614. [Google Scholar] [CrossRef]
- Sett, A.; Ayushman, M.; Dasgupta, S.; DasGupta, S. Analysis of the distinct pattern formation of globular proteins in the presence of micro-and nanoparticles. J. Phys. Chem. B 2018, 122, 8972–8984. [Google Scholar] [CrossRef]
- Carreón, Y.J.; González-Gutiérrez, J.; Pérez-Camacho, M.; Mercado-Uribe, H. Patterns produced by dried droplets of protein binary mixtures suspended in water. Colloids Surf. B Biointerfaces 2018, 161, 103–110. [Google Scholar] [CrossRef]
- Pal, A.; Gope, A.; Iannacchione, G.S. A comparative study of the phase separation of a nematic liquid crystal in the self-assembling drying protein drops. MRS Adv. 2019, 4, 1309–1314. [Google Scholar] [CrossRef]
- Sefiane, K.; Duursma, G.; Arif, A. Patterns from dried drops as a characterisation and healthcare diagnosis technique, potential and challenges: A review. Adv. Colloid Interface Sci. 2021, 298, 102546. [Google Scholar] [CrossRef] [PubMed]
- Yakhno, T.A.; Yakhno, V.G.; Sanin, A.G.; Sanina, O.A.; Pelyushenko, A.S.; Egorova, N.A.; Terentiev, I.G.; Smetanina, S.V.; Korochkina, O.V.; Yashukova, E.V. The informative-capacity phenomenon of drying drops. IEEE Eng. Med. Biol. Mag. 2005, 24, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Misyura, S. Different modes of heat transfer and crystallization in a drop of NaCl solution: The influence of key factors on the crystallization rate and the heat transfer coefficient. Int. J. Therm. Sci. 2021, 159, 106602. [Google Scholar] [CrossRef]
- Pal, A.; Gope, A.; Iannacchione, G. Temperature and concentration dependence of human whole blood and protein drying droplets. Biomolecules 2021, 11, 231. [Google Scholar] [CrossRef]
- Misyura, S. The dependence of drop evaporation rate and wettability on corrosion kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125735. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827. [Google Scholar] [CrossRef]
- Pal, A.; Gope, A.; Iannacchione, G.S. Hierarchical Exploration of Drying Patterns Formed in Drops Containing Lysozyme, PBS, and Liquid Crystals. Processes 2022, 10, 955. [Google Scholar] [CrossRef]
- Kim, H.; Boulogne, F.; Um, E.; Jacobi, I.; Button, E.; Stone, H.A. Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 2016, 116, 124501. [Google Scholar] [CrossRef] [Green Version]
- Misyura, S. The influence of key factors on the movement of a crystal and a non-crystalline particle on a free droplet surface. Exp. Therm. Fluid Sci. 2019, 109, 109883. [Google Scholar] [CrossRef]
- Perrin, L.; Akanno, A.; Guzman, E.; Ortega, F.; Rubio, R.G. Pattern Formation upon Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Int. J. Mol. Sci. 2021, 22, 7953. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.C.; Trybala, A.; Starov, V.; Das, D.B. Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids Surf. A Physicochem. Eng. Asp. 2014, 451, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J. Pattern formation in drying drops of blood. J. Fluid Mech. 2011, 667, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, M.; Ray, R.; Ayushman, M.; Sood, P.; Bhattacharyya, M.; Sarkar, D.; DasGupta, S. Interfacial energy driven distinctive pattern formation during the drying of blood droplets. J. Colloid Interface Sci. 2020, 573, 307–316. [Google Scholar] [CrossRef]
- Brutin, D. Droplet Wetting and Evaporation: From Pure to Complex Fluids; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Zeid, W.B.; Brutin, D. Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood. Colloids Surf. A Physicochem. Eng. Asp. 2013, 430, 1–7. [Google Scholar] [CrossRef]
- Jain, K.S.; Kathiravan, M.; Somani, R.S.; Shishoo, C.J. The biology and chemistry of hyperlipidemia. Bioorg. Med. Chem. 2007, 15, 4674–4699. [Google Scholar] [CrossRef]
- Bevk, M.; Kononenko, I. A statistical approach to texture description of medical images: A preliminary study. In Proceedings of the Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002), Maribor, Slovenia, 4–7 June 2002; pp. 239–244. [Google Scholar]
- Jain, S. Brain cancer classification using GLCM based feature extraction in artificial neural network. Int. J. Comput. Sci. Eng. Technol. 2013, 4, 966–970. [Google Scholar]
- Tahir, M.A.; Bouridane, A.; Kurugollu, F. An FPGA based coprocessor for GLCM and Haralick texture features and their application in prostate cancer classification. Analog Integr. Circuits Signal Process. 2005, 43, 205–215. [Google Scholar] [CrossRef]
- Mostaço-Guidolin, L.B.; Ko, A.C.T.; Wang, F.; Xiang, B.; Hewko, M.; Tian, G.; Major, A.; Shiomi, M.; Sowa, M.G. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 2013, 3, 2190. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, J.; Pellegrino, J.M.; Soazo, M.; Corrêa, A.P.F.; Brandelli, A.; Risso, P.; Boeris, V. Mineral fortification modifies physical and microstructural characteristics of milk gels coagulated by a bacterial enzymatic pool. Colloids Surf. B Biointerfaces 2018, 161, 296–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Shao, Y.; Li, X.; He, Y. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 2015, 5, 16564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer diagnosis using deep learning: A bibliographic review. Cancers 2019, 11, 1235. [Google Scholar] [CrossRef] [Green Version]
- Carreón, Y.J.; Gómez-López, M.L.; Díaz-Hernández, O.; Vazquez-Vergara, P.; Moctezuma, R.E.; Saniger, J.M.; González-Gutiérrez, J. Patterns in dried droplets to detect unfolded BSA. Sensors 2022, 22, 1156. [Google Scholar] [CrossRef]
- Carreón, Y.J.; Ríos-Ramírez, M.; Moctezuma, R.; González-Gutiérrez, J. Texture analysis of protein deposits produced by droplet evaporation. Sci. Rep. 2018, 8, 9580. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Gope, A.; Kafle, R.; Iannacchione, G.S. Phase separation of a nematic liquid crystal in the self-assembly of lysozyme in a drying aqueous solution drop. MRS Commun. 2019, 9, 150–158. [Google Scholar] [CrossRef]
- Shultz, E.K. Multivariate receiver-operating characteristic curve analysis: Prostate cancer screening as an example. Clin. Chem. 1995, 41, 1248–1255. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- Gorr, H.M.; Zueger, J.M.; Barnard, J.A. Lysozyme pattern formation in evaporating drops. Langmuir 2012, 28, 4039–4042. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; J Mohamed, G. Complex protein patterns formation via salt-induced self-assembly and droplet evaporation. Eur. Phys. J. E 2010, 33, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Gope, A.; Obayemi, J.D.; Iannacchione, G.S. Concentration-driven phase transition and self-assembly in drying droplets of diluting whole blood. Sci. Rep. 2020, 10, 18908. [Google Scholar] [CrossRef] [PubMed]
- Ramsthaler, F.; Schlote, J.; Wagner, C.; Fiscina, J.; Kettner, M. The ring phenomenon of diluted blood droplets. Int. J. Leg. Med. 2016, 130, 731–736. [Google Scholar] [CrossRef]
- Iqbal, R.; Shen, A.Q.; Sen, A. Understanding of the role of dilution on evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic substrates. J. Colloid Interface Sci. 2020, 579, 541–550. [Google Scholar] [CrossRef]
- Bialkower, M.; Manderson, C.A.; McLiesh, H.; Tabor, R.F.; Garnier, G. Paper diagnostic for direct measurement of fibrinogen concentration in whole blood. ACS Sensors 2020, 5, 3627–3638. [Google Scholar] [CrossRef]
- Huang, J.; Ali, N.; Quansah, E.; Guo, S.; Noutsias, M.; Meyer-Zedler, T.; Bocklitz, T.; Popp, J.; Neugebauer, U.; Ramoji, A. Vibrational spectroscopic investigation of blood plasma and serum by drop coating deposition for clinical application. Int. J. Mol. Sci. 2021, 22, 2191. [Google Scholar] [CrossRef]
- Esmonde-White, K.A.; Esmonde-White, F.W.; Morris, M.D.; Roessler, B.J. Characterization of biofluids prepared by sessile drop formation. Analyst 2014, 139, 2734–2741. [Google Scholar] [CrossRef] [Green Version]
- Lovergne, L.; Clemens, G.; Untereiner, V.; Lukaszweski, R.A.; Sockalingum, G.D.; Baker, M.J. Investigating optimum sample preparation for infrared spectroscopic serum diagnostics. Anal. Methods 2015, 7, 7140–7149. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, E.J.; Tsunoda, F.; Diffenderfer, M.; Polisecki, E.; Thai, N.; Asztalos, B. The Measurement of Lipids, Lipoproteins, Apolipoproteins, Fatty Acids, and Sterols, and Next Generation Sequencing for the Diagnosis and Treatment of Lipid Disorders; MDText.com, Inc.: South Dartmouth, MA, USA, 2000; Available online: http://dx.doi.org/10.1039/C3AN02175K (accessed on 5 July 2023).
- Kurstjens, S.; Gemen, E.; Walk, S.; Njo, T.; Krabbe, J.; Gijzen, K.; Elisen, M.G.; Kusters, R. Performance of commercially-available cholesterol self-tests. Ann. Clin. Biochem. 2021, 58, 289–296. [Google Scholar] [CrossRef]
- Bastianelli, K.; Ledin, S.; Chen, J. Comparing the accuracy of 2 point-of-care lipid testing devices. J. Pharm. Pract. 2017, 30, 490–497. [Google Scholar] [CrossRef]
- Lee, W.C.; Ng, H.Y.; Hou, C.Y.; Lee, C.T.; Fu, L.M. Recent advances in lab-on-paper diagnostic devices using blood samples. Lab Chip 2021, 21, 1433–1453. [Google Scholar] [CrossRef]
- Zong, L.; Han, Y.; Gao, L.; Du, C.; Zhang, X.; Li, L.; Huang, X.; Liu, J.; Yu, H.D.; Huang, W. A transparent paper-based platform for multiplexed bioassays by wavelength-dependent absorbance/transmittance. Analyst 2019, 144, 7157–7161. [Google Scholar] [CrossRef] [PubMed]
- Li, C.G.; Joung, H.A.; Noh, H.; Song, M.B.; Kim, M.G.; Jung, H. One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab A Chip 2015, 15, 3286–3292. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Eom, K.S.; Shin, K.S.; Kang, J.Y.; Lee, S.H. Enzyme-loaded paper combined impedimetric sensor for the determination of the low-level of cholesterol in saliva. Sens. Actuators B Chem. 2018, 271, 73–81. [Google Scholar] [CrossRef]
- Park, C.; Kim, H.R.; Kim, S.K.; Jeong, I.K.; Pyun, J.C.; Park, S. Three-dimensional paper-based microfluidic analytical devices integrated with a plasma separation membrane for the detection of biomarkers in whole blood. ACS Appl. Mater. Interfaces 2019, 11, 36428–36434. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, J.; Zi, Y.; Huang, W. 3D MXene sponge: Facile synthesis, excellent hydrophobicity, and high photothermal efficiency for waste oil collection and purification. ACS Appl. Mater. Interfaces 2021, 13, 47302–47312. [Google Scholar] [CrossRef]
- Wang, M.; Zi, Y.; Zhu, J.; Huang, W.; Zhang, Z.; Zhang, H. Construction of super-hydrophobic PDMS@ MOF@ Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications. Chem. Eng. J. 2021, 417, 129265. [Google Scholar] [CrossRef]
Hematic Biometry | Healthy Patient | Dyslipidemic Patient | Unit |
---|---|---|---|
Leukocytes | 4.5 | 8.74 | /L |
Erythrocytes | 4.3 | 4.63 | /mm |
Hemoglobin | 129 | 138 | g/L |
Hematocrit | 40 | 39.3 | % |
Mean Corpuscular Volume | 93 | 84.9 | fL |
Mean Corpuscular Hb | 1.8617 | 1.8493 | fmol |
Mean Corpuscular Hb Concentration | 20.0447 | 21.7823 | mmol/L |
Platelet | 310 | 313 | L |
Mean platelet volume | 7.1 | 9 | fL |
Lymphocyte | 2.07 | 3.59 | L |
Neutrophils | 1.89 | 4.01 | L |
Monocytes | 0.54 | 0.8 | L |
Eosinophils | 0 | 0.24 | L |
Basophils | 0 | 0.05 | L |
Lymphocyte | 46 | 41.1 | % |
Neutrophils | 42 | 45.8 | % |
Monocytes | 12 | 9.2 | % |
Eosinophils | 0 | 2.7 | % |
Basophils | 0 | 0.6 | % |
Biochemistry | |||
Glucose | 5.1621 | 8.9809 | mmol/L |
Urea | 4.995 | 4.8452 | mmol/L |
Urea Nitrogen | 5.0286 | 4.8571 | mmol/L |
Serum Creatinine | 0.0522 | 0.076 | mmol/L |
Total Cholesterol | 3.3364 | 4.7899 | mmol/L |
Triglyceride | 0.7458 | 2.765 | mmol/L |
Cholesterol HDL | 1.2285 | 1.1018 | mmol/L |
Cholesterol LDL | 1.7284 | 3.0958 | mmol/L |
Materials and Structures | Detection Methods | Sample Type | Target | Detection Limit or Accuracy | Refs. |
---|---|---|---|---|---|
Strip-based meter | N/A | finger-stick blood | Cholesterol, HDL, TG, LDL | 96% | [53] |
Strip-based meter | N/A | finger-stick blood | Cholesterol, HDL, TG, LDL | 40% | [53] |
Strip-based meter | N/A | finger-stick blood | Cholesterol, TG | 92% | [53] |
Single-use strip | N/A | finger-stick blood | Cholesterol | 85% | [53] |
Single-use strip | N/A | finger-stick blood | Cholesterol | 80% | [53] |
Chromatogr. paper, 2-D | Colorimetric + Reagent | Serum Centrifuge | Cholesterol | 0.1 mM | [56] |
PDMS + NC membrane, 3-D | Colorimetric + biomarker | Whole blood | Cholesterol | 11 mg dL | [57] |
NC paper, 3-D | Electrochem + modified ED | Saliva | Cholesterol | 0.5 g dL | [58] |
Filter paper, 3-D | Colorimetric + biomarker | Whole blood | Cholesterol | N/A | [59] |
flower-shaped lab-on-paper | Colorimetric + biomarker | Whole blood | Cholesterol, TG, LDL, HDL | 50 mg dL, 70 mg dL, 70 mg dL, 60 mg dL | [59] |
PMMA | Image Analysis | Diluted blood | Lipid | 95% | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ancheyta-Palacios, M.; Velasco-Terán, I.G.; Carreón, Y.J.P.; González-Gutiérrez, J. Dried Droplets of Diluted Blood to Detect a High Concentration of Lipids. Processes 2023, 11, 2047. https://doi.org/10.3390/pr11072047
Ancheyta-Palacios M, Velasco-Terán IG, Carreón YJP, González-Gutiérrez J. Dried Droplets of Diluted Blood to Detect a High Concentration of Lipids. Processes. 2023; 11(7):2047. https://doi.org/10.3390/pr11072047
Chicago/Turabian StyleAncheyta-Palacios, Monserrat, Iris G. Velasco-Terán, Yojana J. P. Carreón, and Jorge González-Gutiérrez. 2023. "Dried Droplets of Diluted Blood to Detect a High Concentration of Lipids" Processes 11, no. 7: 2047. https://doi.org/10.3390/pr11072047
APA StyleAncheyta-Palacios, M., Velasco-Terán, I. G., Carreón, Y. J. P., & González-Gutiérrez, J. (2023). Dried Droplets of Diluted Blood to Detect a High Concentration of Lipids. Processes, 11(7), 2047. https://doi.org/10.3390/pr11072047