Facile Electrochemical Biosensing Platform Based on Laser Induced Graphene/Laccase Electrode for the Effective Determination of Gallic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of LIG Electrode
2.3. Fabrication of LIG/Lac Electrode
2.4. Electrochemical Analysis
2.5. Characterization
3. Results and Discussion
3.1. LIG/Lac-Based GA Sensor
3.2. Characterization of LIG
3.3. Optimization of Laccase Dosage
3.4. Chronoamperometry Determination
3.5. Interferences Study and Matrix Effect
3.6. Regeneration and Storage Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranga, R.; Kumar, A.; Kumari, P.; Singh, P.; Madaan, V.; Kumar, K. Ferrite application as an electrochemical sensor: A review. Mater. Charact. 2021, 178, 111269. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Atar, N.; Ozcan, N. A novel electrochemical lung cancer biomarker cytokeratin 19 fragment antigen 21-1 immunosensor based on Si3N4/MoS2 incorporated MWCNTs and core-shell type magnetic nanoparticles. Nanoscale 2021, 13, 4660–4669. [Google Scholar] [CrossRef]
- Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection. Biosens. Bioelectron. 2020, 170, 112598. [Google Scholar] [CrossRef]
- Dong, W.; Niu, X.; Ji, X.; Chen, Y.; Kong, L.B.; Kang, L.; Ran, F. Transferring Electrochemically Active Nanomaterials into a Flexible Membrane Electrode via Slow Phase Separation Method Induced by Water Vapor. ACS Sustain. Chem. Eng. 2019, 7, 4295–4306. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, L.; Dai, L.; Wang, Y.; Tian, Y. Nonenzymatic Electrochemical Sensor with Ratiometric Signal Output for Selective Determination of Superoxide Anion in Rat Brain. Anal. Chem. 2021, 93, 5570–5576. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X. Femtosecond Thin-Film Laser Amplifiers Using Chirped Gratings. ACS Omega 2019, 4, 7980–7986. [Google Scholar] [CrossRef] [Green Version]
- Trusovas, R.; Niaura, G.; Gaidukevic, J.; Malisauskaite, I.; Barkauskas, J. Graphene oxide-dye nanocomposites: Effect of molecular structure on the quality of laser-induced graphene. Nanotechnology 2018, 29, 445704. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. Laser-Induced Graphene Based Flexible Electronic Devices. Biosensors 2022, 12, 55. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, X.; Sun, Z.; Chen, H.; Fu, J.; Si, H.; Ge, C.; Lin, S. Laser-Induced Graphene-Based Wearable Epidermal Ion-Selective Sensors for Noninvasive Multiplexed Sweat Analysis. Biosensors 2022, 12, 397. [Google Scholar] [CrossRef]
- Wan, Z.; Nguyen, N.T.; Gao, Y.; Li, Q. Laser induced graphene for biosensors. Sustain. Mater. Technol. 2020, 25, e00205. [Google Scholar] [CrossRef]
- Fenzl, C.; Nayak, P.; Hirsch, T.; Wolfbeis, O.S.; Alshareef, H.N.; Baeumner, A.J. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing. ACS Sens. 2017, 2, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.F.; Pereira, S.O.; Moreira, A.; Girão, A.V.; Carvalho, A.F.; Fernandes, A.J.S.; Costa, F.M. IR and UV Laser-Induced Graphene: Application as Dopamine Electrochemical Sensors. Adv. Mater. Technol. 2021, 6, 202100007. [Google Scholar] [CrossRef]
- Oliveira, M.E.; Lopes, B.V.; Rossato, J.H.H.; Maron, G.K.; Gallo, B.B.; Rosa, A.; Borges, L.R.; Balboni, D.C.; Alves, M.L.F.; Ferreira, M.R.A.; et al. Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies. Surfaces 2022, 5, 187–201. [Google Scholar] [CrossRef]
- Sangeetha, N.S.; Narayanan, S.S. A novel bimediator amperometric sensor for electrocatalytic oxidation of gallic acid and reduction of hydrogen peroxide. Anal. Chim. Acta 2014, 828, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.H.; Salgado, H.R. Gallic Acid: Review of the Methods of Determination and Quantification. Crit. Rev. Anal. Chem. 2016, 46, 257–265. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Chen, W.; Sun, S.; Tang, H.; Li, Y. Perovskite mesoporous LaFeO3 with peroxidase-like activity for colorimetric detection of gallic acid. Sens. Actuators B Chem. 2020, 321, 128642. [Google Scholar] [CrossRef]
- Saeed, S.; Bibi, I.; Mehmood, T.; Naseer, R.; Bilal, M. Valorization of locally available waste plant leaves for production of tannase and gallic acid by solid-state fermentation. Biomass Convers. Biorefin. 2020, 12, 3809–3816. [Google Scholar] [CrossRef]
- Li, S.; Sun, H.; Wang, D.; Qian, L.; Zhu, Y.; Tao, S. Determination of Gallic Acid by Flow Injection Analysis Based on Luminol-AgNO3-Ag NPs Chemiluminescence System. Chin. J. Chem. 2012, 30, 837–841. [Google Scholar] [CrossRef]
- Alam, P.; Kamal, Y.T.; Alqasoumi, S.I.; Foudah, A.I.; Alqarni, M.H.; Yusufoglu, H.S. HPTLC method for simultaneous determination of ascorbic acid and gallic acid biomarker from freeze dry pomegranate juice and herbal formulation. Saudi Pharm. J. 2019, 27, 975–980. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Chen, T.; Wu, W.; Tang, X.; Wang, G.; Feng, J.; Zhang, W. Facile potentiometric sensing of gallic acid in edible plants based on molecularly imprinted polymer. J. Food Sci. 2020, 85, 2622–2628. [Google Scholar] [CrossRef] [PubMed]
- Badea, M.; di Modugno, F.; Floroian, L.; Tit, D.M.; Restani, P.; Bungau, S.; Iovan, C.; Badea, G.E.; Aleya, L. Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses. Sci. Total Environ. 2019, 672, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.C.; Winiarski, J.P.; Santana, E.R.; Szpoganicz, B.; Vieira, I.C. Ratiometric Electrochemical Sensor for Butralin Determination Using a Quinazoline-Engineered Prussian Blue Analogue. Materials 2023, 16, 1024. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Hong, D.; Chen, W.J.; Wang, J.; Sun, K. Extracellular laccase-activated humification of phenolic pollutants and its application in plant growth. Sci. Total Environ. 2022, 802, 150005. [Google Scholar] [CrossRef]
- Arica, M.Y.; Salih, B.; Celikbicak, O.; Bayramoglu, G. Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–TOF-MS. Chem. Eng. Res. Des. 2017, 128, 107–119. [Google Scholar] [CrossRef]
- Lonappan, L.; Rouissi, T.; Laadila, M.A.; Brar, S.K.; Galan, L.H.; Verma, M.; Surampalli, R.Y. Agro-industrial-Produced Laccase for Degradation of Diclofenac and Identification of Transformation Products. ACS Sustain. Chem. Eng. 2017, 5, 5772–5781. [Google Scholar] [CrossRef]
- Castrovilli, M.C.; Tempesta, E.; Cartoni, A.; Plescia, P.; Bolognesi, P.; Chiarinelli, J.; Calandra, P.; Cicco, N.; Verrastro, M.F.; Centonze, D.; et al. Fabrication of a New, Low-Cost, and Environment-Friendly Laccase-Based Biosensor by Electrospray Immobilization with Unprecedented Reuse and Storage Performances. ACS Sustain. Chem. Eng. 2022, 10, 1888–1898. [Google Scholar] [CrossRef]
- Agrawal, K.; Verma, P. Laccase: Addressing the ambivalence associated with the calculation of enzyme activity. 3 Biotech 2019, 9, 365. [Google Scholar] [CrossRef]
- Wasak, A.; Drozd, R.; Jankowiak, D.; Rakoczy, R. Rotating magnetic field as tool for enhancing enzymes properties—Laccase case study. Sci. Rep. 2019, 9, 3707. [Google Scholar] [CrossRef] [Green Version]
- Nazari, M.; Kashanian, S.; Rafipour, R. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 145, 130–138. [Google Scholar] [CrossRef]
- Demkiv, O.; Gayda, G.; Stasyuk, N.; Brahinetz, O.; Gonchar, M.; Nisnevitch, M. Nanomaterials as Redox Mediators in Laccase-Based Amperometric Biosensors for Catechol Assay. Biosensors 2022, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Pimpilova, M.; Kamarska, K.; Dimcheva, N. Biosensing Dopamine and L-Epinephrine with Laccase (Trametes pubescens) Immobilized on a Gold Modified Electrode. Biosensors 2022, 12, 719. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Chen, J.Y.; Huang, L.; Chen, Y.T.; Li, Y.X. A laser-induced graphene electrochemical immunosensor for label-free CEA monitoring in serum. Analyst 2021, 146, 6631–6642. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, J.P.; de Melo, D.J.; Santana, E.R.; Santos, C.S.; de Jesus, C.G.; Fujiwara, S.T.; Wohnrath, K.; Pessôa, C.A. Layer-by-Layer Films of Silsesquioxane and Nickel(II) Tetrasulphophthalocyanine as Glucose Oxidase Platform Immobilization: Amperometric Determination of Glucose in Kombucha Beverages. Chemosensors 2023, 11, 346. [Google Scholar] [CrossRef]
- Wan, Z.; Umer, M.; Lobino, M.; Thiel, D.; Nguyen, N.T.; Trinchi, A.; Shiddiky, M.J.A.; Gao, Y.; Li, Q. Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon 2020, 163, 385–394. [Google Scholar] [CrossRef]
- Joanni, E.; Kumar, R.; Fernandes, W.P.; Savu, R.; Matsuda, A. In situ growth of laser-induced graphene micro-patterns on arbitrary substrates. Nanoscale 2022, 14, 8914–8918. [Google Scholar] [CrossRef]
- Settu, K.; Lai, Y.C.; Liao, C.T. Carbon nanotube modified laser-induced graphene electrode for hydrogen peroxide sensing. Mater. Lett. 2021, 300, 130106. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, M.; Hao, J.; Wu, K.; Li, C.; Hu, C. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 2018, 127, 287–296. [Google Scholar] [CrossRef]
- Chikere, C.O.; Faisal, N.H.; Kong Thoo Lin, P.; Fernandez, C. The synergistic effect between graphene oxide nanocolloids and silicon dioxide nanoparticles for gallic acid sensing. J. Solid. State Electr. 2019, 23, 1795–1809. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hassan, M.; Bo, X.; Guo, L. Fumarate-based metal-organic framework/mesoporous carbon as a novel electrochemical sensor for the detection of gallic acid and luteolin. J. Electroanal. Chem. 2019, 849, 113378. [Google Scholar] [CrossRef]
Electrodes | Potential (V) | Linear Equation | Linear Range mmol/L | Coefficient of Determination (R2) |
---|---|---|---|---|
LIG | 0.4 | y = 4.42x + 1.01 | 0.1–20 | 0.9982 |
LIG/Lac | y = 5.75x + 3.94 | 0.9877 | ||
LIG | 0.5 | y = 4.64x + 2.31 | 0.9906 | |
LIG/Lac | y = 5.33x + 2.85 | 0.9922 |
Samples | Added Concentration (mmol/L) | Found Current (μA) | Recoveries (%) |
---|---|---|---|
Urine | 0 | 0.49 | - |
5 | 27.59 | 92.18 | |
10 | 78.27 | 114.05 | |
20 | 124.2 | 111.01 | |
Serum | 0 | 0.59 | - |
5 | 21.12 | 69.85 | |
10 | 52.56 | 76.21 | |
20 | 115.6 | 103.21 | |
Sweat | 0 | 1.35 | - |
5 | 28.75 | 93.20 | |
10 | 67.93 | 97.62 | |
20 | 112.9 | 100.10 | |
PBS | 0 | 2.86 | - |
5 | 32.26 | - | |
10 | 71.06 | - | |
20 | 114.29 | - |
Ref. | Electrode | Modified Materials | Determination Method | Linear Range | Detection Limit | Merits | Shortcoming |
---|---|---|---|---|---|---|---|
[22] | Screen printed carbon electrode | No | DPV * | 0.1–2.0 mmol/L | 0.049 mmol/L (Depending on pH) | Real samples: wine, green tea, apple juice and serum fortified with GA; Low response time; Established conditions of pH; Convenient operation | No stability and regeneration tests |
[15] | Paraffin wax impregnated graphite electrode | Thionine + nickel hexacyanoferrate | DPV | 4.99 × 10−6–1.20 × 10−3 mol/L | 4.99×10−6 mmol/L | Good stability and reproducibility; Excellent sensitivity; Tea sample analysis | Complex electrode modification process |
[39] | Glassy carbon electrode | Graphene oxide nanocolloids and SiO2-nanoparicles | DPV | 6.25 × 10−6–1.0 × 10−3 mmol/L | 2.09 × 10−6 mol/L | Good stability and reproducibility; Excellent sensitivity; Analyzing red wine, white wine and orange juice, | Complex material preparation |
[40] | Glassy carbon electrode | zirconium fumarate metal-organic framework and mesoporous carbon composite | DPV | 0.2–5 and 5–100 μmol/L | 0.15 μmol/L | Comparable sensitivity and selectivity; Wider linear range; Satisfactory reproducibility and Long -term stability; green tea sample analysis | Complex material preparation |
This work | LIG electrode | Lac | Chronoam-perometry | 0.1–20 mmol/L | 0.07 mmol/L | Flexibility; Simple and convenient operation; Low cost; Good stability and regeneration; Excellent selectivity; Analyzing complex biological samples | Competitive sensitivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Zhou, Y.; Lei, Z.; Chen, R.; Chen, W.; Meng, X.; Li, Y. Facile Electrochemical Biosensing Platform Based on Laser Induced Graphene/Laccase Electrode for the Effective Determination of Gallic Acid. Processes 2023, 11, 2048. https://doi.org/10.3390/pr11072048
Lin X, Zhou Y, Lei Z, Chen R, Chen W, Meng X, Li Y. Facile Electrochemical Biosensing Platform Based on Laser Induced Graphene/Laccase Electrode for the Effective Determination of Gallic Acid. Processes. 2023; 11(7):2048. https://doi.org/10.3390/pr11072048
Chicago/Turabian StyleLin, Xi, Yuchen Zhou, Zhenfeng Lei, Rui Chen, Wanchun Chen, Xiangying Meng, and Yanxia Li. 2023. "Facile Electrochemical Biosensing Platform Based on Laser Induced Graphene/Laccase Electrode for the Effective Determination of Gallic Acid" Processes 11, no. 7: 2048. https://doi.org/10.3390/pr11072048
APA StyleLin, X., Zhou, Y., Lei, Z., Chen, R., Chen, W., Meng, X., & Li, Y. (2023). Facile Electrochemical Biosensing Platform Based on Laser Induced Graphene/Laccase Electrode for the Effective Determination of Gallic Acid. Processes, 11(7), 2048. https://doi.org/10.3390/pr11072048