Mixed-Mode Crack Propagation in Presence of Vein Fracture in Shale Sample in SCB Test
Abstract
:1. Introduction
2. Experimental Procedure and Results
2.1. Sample Preparation
2.2. Experimental Method
3. Numerical Method
4. Experiment Results
4.1. Laboratory for Mixed Mode with Homogenous Shale
4.2. Experiment Results for Mixed Mode with Vein Fracture
5. Numerical Simulation
5.1. Vein Fracture Thickness Effect on Mixed-Mode Fracture Propagation
5.2. Vein Fracture Strength Effect on Mixed-Mode Fracture Propagation
6. Conclusions
- (1)
- The experimental study focused on a comprehensive set of results for mixed-mode fracture using the SCB shale sample with vein fractures.
- (2)
- Tests conducted on specimens without vein fractures under mixed-mode loading conditions show that as the notch angle increases, KI reduces while KII increases.
- (3)
- By conducting numerical simulations based on the finite element method (FEM), the modified Y1 and Y2 by FEM were determined to calculate the fracture toughness of vein fracture shale specimens. The crack growth angle is predicted by MTS criterion, and the predicted result is more accurate.
- (4)
- The presence of naturally occurring vein fractures has a significant impact on both fracture toughness and crack propagation paths. As the thickness of the vein fracture increases, the path of crack propagation has some deviation. It will extend the vein fracture and propagate when the fracture has lower vein fracture strength. It will cross the vein fracture when the fracture encounters a higher vein fracture strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Li, Z.Q.; Duan, G.F.; Yang, J.J.; Shi, Y.Z.; Shi, H.Q. Effect of hydraulic fracture conductivity on deep shale gas production. Xinjiang Oil Gas 2023, 19, 35–41. [Google Scholar]
- Luo, Y.; Kong, H.; Xu, K.S.; Mamuti, T.E.X.J.; Zheng, H. Numerical simulation for vertical propagation pattern of hydraulic fractures in sand-shale interbedded reservoirs. Xinjiang Oil Gas 2023, 19, 49–56. [Google Scholar]
- Gale, J.F.W.; Reed, R.M.; Holder, J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 2007, 91, 603–622. [Google Scholar] [CrossRef]
- Sarmadivaleh, M.; Rasouli, V. Modified Reinshaw and Pollard Criteria for a Non-Orthogonal Cohesive Natural Interface Intersected by an Induced Fracture. Rock Mech. Rock Eng. 2014, 47, 2107–2115. [Google Scholar] [CrossRef]
- Blanton, T.L. An experimental study of interaction between hydraulically induced and pre-existing fractures. In Proceedings of the SPE Unconventional Gas Recovery Symposium, Pittsburgh, PA, USA, 16–18 May 1982; Society of Petroleum Engineers: Richardson, TX, USA, 1982. [Google Scholar]
- Gu, H.; Weng, X.; Lund, J.B.; Mack, M.G.; Ganguly, U.; Suarez-Rivera, R. Hydraulic Fracture Crossing Natural Fracture at Non-orthogonal Angles, A Criterion, Its Validation and Applications. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 24–26 January 2011; Society of Petroleum Engineers: Richardson, TX, USA, 2011. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, W.; Keer, L.M. An energy based analytical method to predict the influence of natural fractures on hydraulic fracture propagation. Eng. Fract. Mech. 2018, 189, 232–245. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, J.; Rahman, S.S.; Li, Y.; Yuan, Y. A Comprehensive Model of a Hydraulic Fracture Interacting with a Natural Fracture: Analytical and Numerical Solution. Rock Mech. Rock Eng. 2019, 52, 1095–1113. [Google Scholar] [CrossRef]
- Chuprakov, D.; Melchaeva, O.; Prioul, R. Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities. Rock Mech. Rock Eng. 2014, 47, 1625–1640. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, Y.; Chen, M. Experimental investigation of hydraulic fracturing in random naturally fractured blocks. Int. J. Rock Mech. Min. Sci. 2010, 47, 1193–1199. [Google Scholar] [CrossRef]
- Olson, J.E.; Bahorich, B.; Holder, J. Examining Hydraulic Fracture—Natural Fracture Interaction in Hydrostone Block Experiments. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012; Society of Petroleum Engineers: Richardson, TX, USA, 2012. [Google Scholar] [CrossRef]
- Lee, H.P.; Olson, J.E.; Holder, J.; Gale, J.F.W.; Myers, R.D. The interaction of propagating opening mode fractures with preexisting discontinuities in shale. J. Geophys. Res. Solid Earth 2015, 120, 169–181. [Google Scholar] [CrossRef]
- Dahi-Taleghani, A.; Olson, J.E. Numerical Modeling of Multistranded-Hydraulic-Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures. SPE J. 2011, 16, 575–581. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, X.; Zhu, H.; Zhang, X.; Pan, R. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method. J. Nat. Gas Sci. Eng. 2015, 25, 180–188. [Google Scholar] [CrossRef]
- Lee, H.P.; Olson, J.E.; Schultz, R.A. Interaction analysis of propagating opening mode fractures with veins using the Discrete Element Method. Int. J. Rock Mech. Min. Sci. 2018, 103, 275–288. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, H.; Zhao, Z.; Chen, Z. DEM Modeling of Interaction Between the Propagating Fracture and Multiple Pre-existing Cemented Discontinuities in Shale. Rock Mech. Rock Eng. 2019, 52, 1993–2001. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Guo, Q.; Wei, J.; Li, J. Miscibility, morphology and fracture toughness of epoxy resin/poly(styrene-co-acrylonitrile) blends. Polymer 1996, 37, 4667–4673. [Google Scholar] [CrossRef]
- Wang, W.; Olson, J.E.; Prodanović, M.; Schultz, R.A. Interaction between cemented natural fractures and hydraulic fractures assessed by experiments and numerical simulations. J. Pet. Sci. Eng. 2018, 167, 506–516. [Google Scholar] [CrossRef]
- Xie, Y.; Cao, P.; Jin, J.; Wang, M. Mixed mode fracture analysis of semi-circular bend (SCB) specimen: A numerical study based on extended finite element method. Comput. Geotech. 2017, 82, 157–172. [Google Scholar] [CrossRef]
- Suo, Y.; Su, X.; Wang, Z.; He, W.; Fu, X.; Feng, F.; Pan, Z.; Xie, K.; Wang, G. A study of inter-stratum propagation of hydraulic fracture of sandstone-shale interbedded shale oil. Eng. Fract. Mech. 2022, 275, 108858. [Google Scholar] [CrossRef]
- Suo, Y.; Chen, Z.; Rahman, S.S.; Song, H. Experimental and Numerical Investigation of the Effect of Bedding Layer Orientation on Fracture Toughness of Shale Rocks. Rock Mech. Rock Eng. 2020, 53, 3625–3635. [Google Scholar] [CrossRef]
- Ouchterlony, F. Extension of the Compliance and Stress Intensity Formulas for the Single Edge Crack Round Bar in Bending. In Fracture Mechanics for Ceramics, Rocks, and Concrete; ASTM International: West Conshohocken, PA, USA, 1981. [Google Scholar]
- Fowell, R.; Hudson, J.; Xu, C.; Zhao, X. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1995, 7, 322A. [Google Scholar] [CrossRef]
- Amrollahi, H.; Baghbanan, A.; Hashemolhosseini, H. Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I–II loading conditions using CCNBD and HCCD specimens. Int. J. Rock Mech. Min. Sci. 2011, 48, 1123–1134. [Google Scholar] [CrossRef]
- Suo, Y.; Zhao, Y.; Fu, X.; He, W.; Pan, Z. Mixed-mode fracture behavior in deep shale reservoirs under different loading rates and temperatures. Pet. Sci. 2023. [Google Scholar] [CrossRef]
- Suo, Y.; Dong, M.; Wang, Z.; Gao, J.; Fu, X.; Pan, Z.; Xie, K.; Qi, T.; Wang, G. Characteristics of mixed-mode Ⅰ-Ⅱ fracture of bedding mud shale based on discrete element method. J. Pet. Sci. Eng. 2022, 219, 111135. [Google Scholar] [CrossRef]
- Ayatollahi, M.; Aliha, M.; Hassani, M. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens. Mater. Sci. Eng. A 2006, 417, 348–356. [Google Scholar] [CrossRef]
- Kuruppu, M.D.; Chong, K.P. Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Eng. Fract. Mech. 2012, 91, 133–150. [Google Scholar] [CrossRef]
- Zuo, J.-P.; Yao, M.-H.; Li, Y.-J.; Zhao, S.-K.; Jiang, Y.-Q.; Li, Z.-D. Investigation on fracture toughness and micro-deformation field of SCB sandstone including different inclination angles cracks. Eng. Fract. Mech. 2019, 208, 27–37. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourian, A.; Pirmohammad, S.; Aliha, M.; Ayatollahi, M. Mixed mode fracture resistance of asphalt concrete mixtures. Eng. Fract. Mech. 2012, 93, 153–167. [Google Scholar] [CrossRef]
- Chandler, M.R.; Meredith, P.G.; Brantut, N.; Crawford, B. Fracture toughness anisotropy in shale. J. Geophys. Res. Solid Earth 2016, 121, 1706–1729. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.Q. Numerical Simulation of Three—Point Bending of Hydraulic Concrete Side Slotting Specimen Based on MTS. Water Conserv. Sci. Technol. Econ. 2020, 26, 32–37. [Google Scholar]
- Li, X.B.; Zuo, Y.J.; Ma, C.D. Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading. Chin. J. Rock Mech. Eng. 2005, 24, 2814–2824. [Google Scholar]
- Hou, C.; Wang, Z.Y.; Wang, Z.H. Fracture behaviors of concrete CSTBD specimens by the modified MTS criterion under the condition of compression loading. Sci. Sin. Technol. 2016, 46, 377–386. [Google Scholar]
- Lim, I.L.; Johnston, I.W.; Choi, S.K.; Boland, J.N. Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2—Mixed-mode. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 199–212. [Google Scholar] [CrossRef]
- Ayatollahi, M.; Aliha, M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput. Mater. Sci. 2007, 38, 660–670. [Google Scholar] [CrossRef]
Notch Angle/° | KIC/(MPa·mm1/2) | KIIC/(MPa·mm1/2) |
---|---|---|
30 | 0.84 | 0.28 |
30 | 0.86 | 0.29 |
30 | 0.81 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Q.; Zhou, X.; Xu, M.; Dong, J.; Ren, D.; Li, R. Mixed-Mode Crack Propagation in Presence of Vein Fracture in Shale Sample in SCB Test. Processes 2023, 11, 2188. https://doi.org/10.3390/pr11072188
Ran Q, Zhou X, Xu M, Dong J, Ren D, Li R. Mixed-Mode Crack Propagation in Presence of Vein Fracture in Shale Sample in SCB Test. Processes. 2023; 11(7):2188. https://doi.org/10.3390/pr11072188
Chicago/Turabian StyleRan, Qiquan, Xin Zhou, Mengya Xu, Jiaxin Dong, Dianxing Ren, and Ruibo Li. 2023. "Mixed-Mode Crack Propagation in Presence of Vein Fracture in Shale Sample in SCB Test" Processes 11, no. 7: 2188. https://doi.org/10.3390/pr11072188
APA StyleRan, Q., Zhou, X., Xu, M., Dong, J., Ren, D., & Li, R. (2023). Mixed-Mode Crack Propagation in Presence of Vein Fracture in Shale Sample in SCB Test. Processes, 11(7), 2188. https://doi.org/10.3390/pr11072188