In Situ Indoor Air Volatile Organic Compounds Assessment in a Car Factory Painting Line
Abstract
:1. Introduction
1.1. Volatile Organic Compounds
1.2. Gas Chromatography–Ion Mobility Spectrometry
2. Materials and Methods
2.1. Analyzed Locations
2.2. Air Collection Methodology
2.3. Gas Chromatography–Ion Mobility Spectrometry
2.4. Assessment of VOCs
3. Results and Discussion
3.1. Data Repeatability
3.2. VOCs Identification
3.3. VOCs Quantification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruice, P.Y. Organic Chemistry, 8th ed.; Pearson Education: Hoboken, NJ, USA, 2016. [Google Scholar]
- Carey, F.A.; Giuliano, R.M. Organic Chemistry, 11th ed.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Klein, D. Organic Chemistry, 3rd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Solomons, T.W.G.; Fryhle, C.B. Organic Chemistry, 12th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- European Union. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products. Off. J. Eur. Union. 2004, 143, 87–96. [Google Scholar]
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illness in Children. Ann. Glob. Health 2018, 84, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Baurès, E.; Blanchard, O.; Mercier, F.; Surget, E.; Cann, P.; Rivier, A.; Gangneux, J.P.; Florentin, A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 2018, 642, 168–179. [Google Scholar] [CrossRef]
- Gallart-Mateu, D.; Armenta, S.; Guardia, M. Indoor and outdoor determination of pesticides in air by ion mobility spectrometry. Talanta 2016, 161, 632–639. [Google Scholar] [CrossRef]
- Wah, C.; Yu, F.; Kim, J.T. Building Pathology, Investigation of Sick Building—VOC Emissions. Indoor Built Environ. 2010, 19, 30–39. [Google Scholar]
- Kagi, N.; Fujii, S.; Tamura, H.; Namiki, N. Secondary VOC emissions from flooring material surfaces exposed to ozone or UV irradiation. Build. Environ. 2009, 44, 1199–1205. [Google Scholar] [CrossRef]
- Śmiełowska, M.; Marć, M.; Zabiegala, B. Indoor air quality in public utility environments—A review. Environ. Sci. Pollut. Res. 2017, 24, 11166–11176. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Singh, B.P.; Punia, M.; Singh, D.; Kumar, K.; Jain, V.K. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ. Sci. Pollut. Res. 2014, 21, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R. VOC Emission from Automotive Painting and Their Control: A Review. Environ. Eng. Res. 2011, 16, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Gutierrez-Osuna, R.; Hodges, R.; Luckey, G.; Crowell, J.; Schiffman, S.; Nagle, H.T. Using Field Asymmetric Ion Mobility Spectrometry for Odor Assessment of Automobile Interior Components. IEEE Sens. J. 2016, 16, 5747–5756. [Google Scholar] [CrossRef]
- Costello, B.; Amann, A.; Alkateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N. A review of the volatiles from the healthy human body. J. Breath. Res. 2014, 8, 014001. [Google Scholar] [CrossRef]
- Zhang, R.K.; Wang, J.X.; Cao, H. High-Performance Cataluminescence Sensor Based on Nanosized V2O5 for 2-Butanone Detection. Molecules 2020, 25, 3552. [Google Scholar] [CrossRef]
- The National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/niosh/idlh/intridl4.html (accessed on 20 March 2023).
- Mochalski, P.; Wiesenhofer, H.; Allers, M.; Zimmermann, S.; Guntner, A.T.; Pineau, N.J.; Lederer, W.; Agapiou, A.; Mayhew, C.A.; Ruzsanyi, V. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS). J. Chromatogr. 2018, 1076, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Haick, H.; Broza, Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2013, 43, 1423–1449. [Google Scholar] [CrossRef] [Green Version]
- Bessa, V.; Darwiche, K.; Teschler, H.; Sommerwerck, U.; Rabis, T.; Baumbach, J.I.; Freitag, L. Detection of volatile organic compounds (VOCs) in exhaled breath of patients with chronic obstructive pulmonary disease (COPD) by ion mobility spectrometry. Int. J. Ion. Mobil. Spectrom. 2011, 14, 7–13. [Google Scholar] [CrossRef]
- Handa, H.; Usuba, A.; Maddula, S.; Baumbach, J.I.; Mineshita, M.; Miyazawa, T. Exhaled Breath Analysis for Lung Cancer Detection Using Ion Mobility Spectrometry. PLoS ONE 2014, 9, e114555. [Google Scholar] [CrossRef]
- Santos, P.H.C.; Vassilenko, V.; Moura, P.C.; Conduto, C.; Fernandes, J.M.; Bonifácio, P. Instrumentation for differentiation of exhaled air. In Proceedings of the Fifteenth International Conference on Correlation Optics, Chernivtsi, Ukraine, 16 September 2021; p. 121262L. [Google Scholar]
- Szczurek, A.; Maziejuk, M.; Maciejewska, M.; Pietrucha, T.; Sikora, T. BTX compounds recognition in humid air using differential ion mobility spectrometry combined with a classifier. Sens. Actuators B Chem. 2017, 240, 1237–1244. [Google Scholar] [CrossRef]
- Crump, D.R.; Squire, R.W.; Yu, C.W.F. Sources and Concentrations of Formaldehyde and Other Volatile Organic Compounds in the Indoor Air of Four Newly Built Unoccupied Test Houses. Indoor Built Environ. 1997, 6, 45–55. [Google Scholar] [CrossRef]
- Xie, Z.; Sielemann, H.; Li, F.; Baumbach, J.I. Determination of acetone, 2-butanone, diethyl ketone and BTX using HSCC-UV-IMS. Anal. Bioanal. Chem. 2002, 372, 606–610. [Google Scholar] [CrossRef]
- Maziejuk, M.; Szczurek, A.; Maciejewska, M.; Pietrucha, T.; Szyposzynska, M. Determination of benzene, toluene and xylene concentration in humid air using differential ion mobility spectrometry and partial least squares regression. Talanta 2016, 152, 137–146. [Google Scholar] [CrossRef]
- Lerner, J.E.C.; Sanchez, E.Y.; Sambeth, J.E.; Porta, A.A. Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos. Environ. 2012, 55, 440–447. [Google Scholar] [CrossRef]
- Bysko, S.; Krystek, J.; Bysko, S. Automotive Paint Shop 4.0. Comput. Ind. Eng. 2020, 139, 105546. [Google Scholar] [CrossRef]
- Singgih, I.K.; Yu, O.; Kim, B.; Koo, J.; Lee, S. Production scheduling problem in a factory of automobile component primer painting. J. Intell. Manuf. 2020, 31, 1483–1496. [Google Scholar] [CrossRef]
- Salihoglu, G.; Salihoglu, N.K. A review on paint sludge from automotive industries: Generation, characteristics and management. J. Environ. Manag. 2016, 169, 223–235. [Google Scholar] [CrossRef]
- Baumann, W.; Dinglreiter, U. Method for reprocessing and recycling of aqueous rinsing liquids from car painting with water-based paints in automobile industry. Heat. Mass. Transf. 2011, 47, 1043–1049. [Google Scholar] [CrossRef]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath Volatile Organic Compounds (VOCs) as Biomarkers for the Diagnosis of Pathological Conditions: A Review. Biomed. J. 2023, 46, 100623. [Google Scholar] [CrossRef]
- Günzler, H.; Williams, A. Handbook of Analytical Techniques, 1st ed.; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2001. [Google Scholar]
- Paglia, G.; Astarita, G. Ion Mobility—Mass Spectrometry, 1st ed.; Humana Press: Totowa, NJ, USA; Springer: New York, NY, USA, 2020. [Google Scholar]
- Moura, P.C.; Pivetta, T.P.; Vassilenko, V.; Ribeiro, P.A.; Raposo, M. Graphene Oxide Thin Films for Detection and Quantification of Industrially Relevant Alcohols and Acetic Acid. Sensors 2023, 23, 462. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z.; Hill, H.H. Ion Mobility Spectrometry, 3rd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2014. [Google Scholar]
- Moura, P.C.; Vassilenko, V. Contemporary ion mobility spectrometry applications and future trends towards environmental, health and food research: A review. Int. J. Mass. Spectrom. 2023, 486, 117012. [Google Scholar] [CrossRef]
- Santos, P.; Vassilenko, V.; Conduto, C.; Fernandes, J.M.; Moura, P.C.; Bonifácio, P. Pilot Study for Validation and Differentiation of Alveolar and Esophageal Air. In Proceedings of the Technological Innovation for Applied AI Systems, Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS 2021), Caparica, Portugal, 7–9 July 2021. [Google Scholar]
- Kanu, A.B.; Hill, H.H. Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. A 2008, 1177, 12–27. [Google Scholar] [CrossRef]
- Santos, F.J.; Galceran, M. The application of gas chromatography to environmental analysis. Trends Anal. Chem. 2002, 21, 672–685. [Google Scholar] [CrossRef]
- Daris, R.; St-Pierre, C. Beta decay of tritium. Nucl. Phys. A 1969, 138, 545–555. [Google Scholar] [CrossRef]
- Kuklya, A.; Reinecke, T.; Uteschil, F.; Kerpen, K.; Zimmermann, S.; Telgheder, U. X-ray ionization differential ion mobility spectrometry. Talanta 2017, 162, 159–166. [Google Scholar] [CrossRef]
- Wilkins, C.L.; Trimpin, S. Ion Mobility Spectrometry—Mass Spectrometry, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2011. [Google Scholar]
- Hill, H.H.; Siems, W.F.; Louis, R.H.S.; McMinn, D.G. Ion Mobility Spectrometry. Anal. Chem. 1990, 62, 1201–1209. [Google Scholar] [CrossRef]
- Kaur-Atwal, G.; O’Connor, G.; Aksenov, A.A.; Bocos-Bintintan, V.; Thomas, C.L.P.; Creaser, C.S. Chemical standards for ion mobility spectrometry: A review. Int. J. Ion. Mobil. Spectrom. 2009, 12, 1–14. [Google Scholar] [CrossRef]
- Krylov, E.; Nazarov, E.G.; Miller, R.A.; Tadjikov, B.; Eiceman, G.A. Field dependence of mobilities for gas-phase-protonated monomers and proton-bound dimers of ketones by planar field asymmetric waveform ion mobility spectrometer (PFAIMS). J. Phys. Chem. 2002, 106, 5437–5444. [Google Scholar] [CrossRef]
- Moura, P.C.; Vassilenko, V. Gas Chromatography—Ion Mobility Spectrometry as a tool for quick detection of hazardous volatile organic compounds in indoor and ambient air: A university campus case study. Eur. J. Mass. Spectrom. 2022, 28, 113–126. [Google Scholar] [CrossRef]
- Moura, P.C.; Vassilenko, V.; Fernandes, J.M.; Santos, P.H. Indoor and Outdoor Air Profiling with GC-IMS. In Proceedings of the Technological Innovation for Life Improvement, Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS 2020), Caparica, Portugal, 1–3 July 2020. [Google Scholar]
- Creaser, C.S.; Griffiths, J.R.; Bramwell, C.J.; Noreen, S.; Hill, C.A.; Thomas, C.L.P. Ion mobility spectrometry: A review. Part 1. Structural analysis by mobility measurement. Analyst 2004, 129, 984–994. [Google Scholar] [CrossRef]
- Borsdorf, H.; Eiceman, G.A. Ion Mobility Spectrometry: Principles and Applications. Appl. Spectrosc. Rev. 2006, 41, 323–375. [Google Scholar] [CrossRef]
- Ewing, R.G.; Atkinson, D.A.; Eiceman, G.A.; Ewing, G.J. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef]
- Gabelica, V.; Marklund, E. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Moura, P.C.; Vassilenko, V.; Ribeiro, P.A. Ion Mobility Spectrometry Towards Environmental Volatile Organic Compounds Identification and Quantification: A Comparative Overview over Infrared Spectroscopy. Emiss. Control Sci. Technol. 2023, 9, 25–46. [Google Scholar] [CrossRef]
- Puton, J.; Holopainen, S.I.; Mäkinen, M.A.; Sillanpää, E.T. Quantitative Response of IMS Detector for Mixtures Containing Two Active Components. Anal. Chem. 2012, 84, 9131–9138. [Google Scholar] [CrossRef]
- Fernandes, J.M.; Vassilenko, V.; Moura, P.C.; Fetter, V. Gas Chromatography—Ion Mobility Spectrometry Instrument for Medical Applications: A Calibration Protocol for ppb and ppt Concentration Range. In Proceedings of the Technological Innovation for Applied AI Systems, Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS 2021), Caparica, Portugal, 7–9 July 2021. [Google Scholar]
Parameters | Values | Units |
---|---|---|
Sample Loop Volume | 1 | mL |
GC Column Model | MXT-200 | - |
GC Column Length | 30 | m |
GC Column Diameter | 0.53 | mm |
GC Temperature | 343.15 | K |
Gas Nature | Purified Air | - |
Carrier Gas Flow | 10 | mL/min |
Drift Gas Flow | 150 | mL/min |
Ionization Source | Tritium-β Radiation | - |
Ionization Intensity | 300 | MBq |
Ionization Polarity | Positive | - |
Drift Region Length | 9.8 | cm |
Drift Potential Difference | 5 | kV |
IMS Temperature Range | 297.15–301.15 | K |
IMS Pressure Range | 757–760 | Torr |
Electrical Field Intensity | 500 | V/cm |
Resolving Power Range | 65–70 | - |
Analysis Duration | 300 | s |
# | Retention Time (s) | Relative Drift Time | K0 | VOCs | CAS Number | Note |
---|---|---|---|---|---|---|
1 | 73.7 | 1.055 | 1.990 | Ethanol | 64-17-5 | M |
74.4 | 1.150 | 1.826 | D | |||
2 | 84.3 | 1.104 | 1.898 | 2-Propanol | 67-63-0 | M |
81.3 | 1.206 | 1.735 | D | |||
80.9 | 1.256 | 1.669 | T | |||
3 | 84.4 | 1.058 | 1.985 | Propanal | 123-38-6 | M |
4 | 89.7 | 1.159 | 2.080 | Acetone | 67-64-1 | D |
88.7 | 1.207 | 1.799 | T | |||
5 | 95.8 | 1.128 | 1.861 | 1-Propanol | 71-23-8 | M |
6 | 113.2 | 1.130 | 1.857 | Butanal | 123-72-8 | M |
113.3 | 1.334 | 1.572 | D | |||
7 | 118.6 | 1.184 | 1.773 | Isobutanol | 78-83-1 | M |
8 | 119.3 | 1.060 | 1.976 | Acetic Acid | 64-19-7 | M |
9 | 119.4 | 1.120 | 1.884 | Benzene | 71-43-2 | M |
10 | 123.5 | 1.081 | 1.943 | 2-Butanone | 78-93-3 | M |
123.2 | 1.299 | 1.614 | D | |||
11 | 143.2 | 1.203 | 1.757 | 1-Butanol | 71-36-3 | M |
140.4 | 1.425 | 1.479 | D | |||
12 | 165.6 | 1.206 | 1.557 | Pentanal | 110-62-3 | M |
13 | 170.6 | 1.116 | 1.886 | Propanoic Acid | 123-38-6 | M |
14 | 252.0 | 1.285 | 1.644 | Hexanal | 66-25-1 | M |
15 | 261.3 | 1.215 | 1.720 | 2-Hexanone | 107-87-9 | M |
16 | 74.0 | 1.106 | 1.903 | N.I. | - | - |
17 | 96.6 | 1.056 | 1.992 | N.I. | - | - |
18 | 103.1 | 1.059 | 1.986 | N.I. | - | - |
19 | 119.3 | 1.043 | 2.017 | N.I. | - | - |
20 | 123.0 | 1.227 | 1.715 | N.I. | - | - |
21 | 125.9 | 1.277 | 1.648 | N.I. | - | - |
22 | 135.0 | 1.197 | 1.758 | N.I. | - | - |
23 | 139.9 | 1.340 | 1.570 | N.I. | - | - |
24 | 144.9 | 1.140 | 1.846 | N.I. | - | - |
25 | 169.9 | 1.132 | 1.858 | N.I. | - | - |
26 | 261.6 | 1.706 | 1.233 | N.I. | - | - |
Locations | Concentration (ppbv) | Standard Deviation (ppbv) |
---|---|---|
Phosphatizing Bath | 26.6 | 0.2 |
Cataphoresis Bath | 25.9 | 0.2 |
Primer Application | 25.8 | 0.2 |
Ink Application | 26.1 | 0.2 |
Varnish Application | 25.9 | 0.1 |
Wax Application | 26.9 | 0.4 |
Factory Ceiling | 26.8 | 0.4 |
Head’s Office | 30.5 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, P.C.; Santos, F.; Fujão, C.; Vassilenko, V. In Situ Indoor Air Volatile Organic Compounds Assessment in a Car Factory Painting Line. Processes 2023, 11, 2259. https://doi.org/10.3390/pr11082259
Moura PC, Santos F, Fujão C, Vassilenko V. In Situ Indoor Air Volatile Organic Compounds Assessment in a Car Factory Painting Line. Processes. 2023; 11(8):2259. https://doi.org/10.3390/pr11082259
Chicago/Turabian StyleMoura, Pedro Catalão, Fausto Santos, Carlos Fujão, and Valentina Vassilenko. 2023. "In Situ Indoor Air Volatile Organic Compounds Assessment in a Car Factory Painting Line" Processes 11, no. 8: 2259. https://doi.org/10.3390/pr11082259
APA StyleMoura, P. C., Santos, F., Fujão, C., & Vassilenko, V. (2023). In Situ Indoor Air Volatile Organic Compounds Assessment in a Car Factory Painting Line. Processes, 11(8), 2259. https://doi.org/10.3390/pr11082259