Development of a Novel Multi-Modal Contextual Fusion Model for Early Detection of Varicella Zoster Virus Skin Lesions in Human Subjects
Abstract
:1. Introduction
2. Related Studies
3. Methodology
3.1. Data Collection and Description
3.2. Data Preprocessing and Augmentation
3.3. Hyperparameter Optimization
3.4. MSHA Model
4. Result and Discussion
4.1. Performance Evaluation Metrics
4.2. Confusion Metrics
4.3. Learning Curve
4.4. Receiver-Operating Characteristic (ROC) Curve
4.5. Comparative Evaluation with State-of-Art Transfer Learning Techniques
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choy, S.-P.; Paolino, A.; Kim, B.J.; Lim, S.M.L.; Seo, J.; Tan, S.P.; Tan, W.R.; Corbett, M.S.; Barker, J.; Lynch, M.D.; et al. BT19: Applications of artificial intelligence and machine learning image analyses in dermatology: A systematic review. Br. J. Dermatol. 2022, 187, 129. [Google Scholar]
- Abhishek, K.; Kawahara, J.; Hamarneh, G. Predicting the Clinical Management of Skin Lesions Using Deep Learning. Sci. Rep. 2021, 11, 7769. [Google Scholar]
- Yap, J.; Yolland, W.; Tschandl, P. Multimodal skin lesion classification using Deep Learning. Exp. Dermatol. 2018, 27, 1261–1267. [Google Scholar]
- Uzun Ozsahin, D.; Mustapha, M.T.; Uzun, B.; Duwa, B.; Ozsahin, I. Computer-aided detection and classification of Monkeypox and chickenpox lesion in human subjects using Deep Learning Framework. Diagnostics 2023, 13, 292. [Google Scholar]
- Chen, Y.-W.; Jain, L.C. Deep Learning in Healthcare: Paradigms and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Kassem, M.A.; Hosny, K.M.; Damaševičius, R.; Eltoukhy, M.M. Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review. Diagnostics 2021, 11, 1390. [Google Scholar]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in Medical Imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar]
- Centers for Disease Control and Prevention. Chickenpox (Varicella). Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/chickenpox/index.html (accessed on 28 April 2023).
- Sampathkumar, P.; Drage, L.A.; Martin, D.P. Herpes zoster (shingles) and postherpetic neuralgia. Mayo Clin. Proc. 2009, 84, 274–280. [Google Scholar]
- Mayo Foundation for Medical Education and Research. Chickenpox. Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/chickenpox/symptoms-causes/syc-20351282 (accessed on 28 April 2023).
- Opstelten, W.; Eekhof, J.; Neven, A.K.; Verheij, T. Treatment of herpes zoster. Can. Fam. Physician 2008, 54, 373–377. [Google Scholar]
- Chanunpha, A. Woman Leg Skin Background with Rash from Herpes Zoster or Shingles… iStock. Available online: https://www.istockphoto.com/pt/foto/woman-leg-skin-background-with-rash-from-herpes-zoster-or-shingles-disease-gm1151504282-312099549 (accessed on 28 April 2023).
- Mejía Lara, J.V.; Arias Velásquez, R.M. Low-cost image analysis with Convolutional Neural Network for herpes zoster. Biomed. Signal Process. Control 2022, 71, 103250. [Google Scholar]
- Lanera, C.; Baldi, I.; Francavilla, A.; Barbieri, E.; Tramontan, L.; Scamarcia, A.; Cantarutti, L.; Giaquinto, C.; Gregori, D. A deep learning approach to estimate the incidence of infectious disease cases for routinely collected ambulatory records: The example of varicella-zoster. Int. J. Environ. Res. Public Health 2022, 19, 5959. [Google Scholar]
- Lee, M.; Kim, J.W.; Jang, B. Chicken pox prediction using Deep learning model. Trans. Korean Inst. Electr. Eng. 2020, 69, 127–137. [Google Scholar]
- Arias, R.; Mejia, J. Varicella-zoster early detection with deep learning. In Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 21–23 October 2020. [Google Scholar]
- Wang, X.-X.; Zhang, Y.; Fan, B.-F. Predicting postherpetic neuralgia in patients with Herpes Zoster by machine learning: A retrospective study. Pain Ther. 2020, 9, 627–635. [Google Scholar]
- Gilbert, P.B.; Luedtke, A.R. Statistical learning methods to determine immune correlates of herpes zoster in vaccine efficacy trials. J. Infect. Dis. 2018, 218, S99–S101. [Google Scholar]
- Subashini, M.; Sahoo, S.; Sunil, V.; Easwaran, S. A Non-Invasive Methodology for the Grade Identification of Astrocytoma Using Image Processing and Artificial Intelligence Techniques. Expert Syst. Appl. 2016, 43, 186–196. [Google Scholar]
- Wang, S.; Hamian, M. Skin Cancer Detection Based on Extreme Learning Machine and a Developed Version of Thermal Exchange Optimization. Comput. Intell. Neurosci. 2021, 2021, 9528664. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar]
- Soni, P. Data Augmentation: Techniques, Benefits, and Applications, Analytics Steps. Available online: https://www.analyticssteps.com/blogs/data-augmentation-techniques-benefits-and-applications (accessed on 28 April 2023).
- Brownlee, J. Use Early Stopping to Halt the Training of Neural Networks at the Right Time. MachineLearningMastery.com. Available online: https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/ (accessed on 28 April 2023).
- Tensorflow Callbacks - How to Monitor Neural Network Training Like a Pro. Better Data Science. (n.d.). Available online: https://betterdatascience.com/tensorflow-callbacks-how-to-monitor-neural-network-training/#:~:text=If%20a%20value%20of%20the%20evaluation%20metric%20doesn%E2%80%99t,old%20learning%20rate%20multiplied%20by%20a%20user-defined%20factor (accessed on 28 April 2023).
- Mustapha, M.T.; Ozsahin, D.U.; Ozsahin, I.; Uzun, B. Breast cancer screening based on supervised learning and multi-criteria decision-making. Diagnostics 2022, 12, 1326. [Google Scholar]
- Uzun Ozsahin, D.; Mustapha, M.T.; Bartholomew Duwa, B.; Ozsahin, I. Evaluating the performance of deep learning frameworks for malaria parasite detection using microscopic images of peripheral blood smears. Diagnostics 2022, 12, 2702. [Google Scholar]
- Seyer Cagatan, A.; Taiwo Mustapha, M.; Bagkur, C.; Sanlidag, T.; Ozsahin, D.U. An alternative diagnostic method for C. Neoformans: Preliminary results of deep-learning based detection model. Diagnostics 2022, 13, 81. [Google Scholar]
- Uzun Ozsahin, D.; Onakpojeruo, E.P.; Uzun, B.; Mustapha, M.T.; Ozsahin, I. Mathematical assessment of machine learning models used for brain tumor diagnosis. Diagnostics 2023, 13, 618. [Google Scholar]
- Muralidhar, K.S.V. Learning Curve to Identify Overfitting and Underfitting in Machine Learning. Medium. Available online: https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5 (accessed on 21 February 2023).
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Overfitting, model tuning, and evaluation of prediction performance. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 109–139. [Google Scholar]
- Wolfe, C.R. Using Transformers for Computer Vision. Medium. Available online: https://towardsdatascience.com/using-transformers-for-computer-vision-6f764c5a078b (accessed on 25 April 2023).
- Trevisan, V. Interpreting ROC Curve and ROC AUC for Classification Evaluation. Medium. Available online: https://towardsdatascience.com/interpreting-roc-curve-and-roc-auc-for-classification-evaluation-28ec3983f077 (accessed on 25 March 2022).
- Brownlee, J. ROC Curves and Precision-Recall Curves for Imbalanced Classification. MachineLearningMastery.com. Available online: https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/ (accessed on 28 April 2023).
- Sabin, J.A. Tackling implicit bias in health care. N. Engl. J. Med. 2022, 387, 105–107. [Google Scholar] [CrossRef]
- Mukherjee, S. The Annotated Resnet-50. Medium. Available online: https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758 (accessed on 28 April 2023).
- Understanding VGG16: Concepts, Architecture, and Performance. Datagen. (22 May 2023). Available online: https://datagen.tech/guides/computer-vision/vgg16/ (accessed on 28 April 2023).
- Alake, R. Deep Learning: Understand the Inception Module. Medium. Available online: https://towardsdatascience.com/deep-learning-understand-the-inception-module-56146866e652 (accessed on 28 April 2023).
Reference | Class | Class Distribution | Distribution after Augmentation | Un-augmented Images Reserved as Test Dataset | Label |
---|---|---|---|---|---|
[4] | Chickenpox | 640 | 10,000 | 50 | 0 |
[12] | Shingles | 622 | 10,000 | 50 | 1 |
S/N | Augmentation Settings | Range |
---|---|---|
1 | Shear range | 0.2 |
2 | Zoom range | 0.2 |
3 | Rotation range | 0.2 |
4 | ZCA whitening | False |
5 | Width shift range | 0.3 |
6 | Height shift range | 0.3 |
7 | Channel shift range | 0.2 |
8 | Vertical flip | True |
9 | Horizontal flip | True |
Precision % | Sensitivity % | Specificity % | F1 Score % | Accuracy % | |
---|---|---|---|---|---|
Chickenpox | 96 | 94 | 98 | 95 | 95 |
Shingles | 94 | 96 | 94 | 95 |
Models | Precision % | Sensitivity % | Specificity % | F1 Score % | TP | FP | TN | FN | AUC | Loss | Accuracy % |
---|---|---|---|---|---|---|---|---|---|---|---|
MSHA | 95.0 | 95.0 | 96.0 | 95.0 | 47 | 3 | 48 | 2 | 0.99 | 0.104 | 95.0 |
ResNet50 | 73.0 | 72.0 | 79.5 | 72.0 | 40 | 10 | 32 | 18 | 0.82 | 0.537 | 72.0 |
VGG16 | 89.0 | 88.0 | 88.0 | 88.0 | 48 | 2 | 40 | 10 | 0.96 | 0.295 | 88.0 |
VGG19 | 86.0 | 86.0 | 88.0 | 86.0 | 44 | 6 | 42 | 8 | 0.92 | 0.416 | 86.0 |
InceptionV3 | 95.0 | 95.0 | 95.2 | 95.0 | 47 | 3 | 48 | 2 | 0.99 | 0.149 | 95.0 |
ViT | 94.0 | 94.0 | 93.9 | 94.0 | 50 | 0 | 43 | 7 | 1.00 | 0.213 | 93.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eze, M.C.; Vafaei, L.E.; Eze, C.T.; Tursoy, T.; Ozsahin, D.U.; Mustapha, M.T. Development of a Novel Multi-Modal Contextual Fusion Model for Early Detection of Varicella Zoster Virus Skin Lesions in Human Subjects. Processes 2023, 11, 2268. https://doi.org/10.3390/pr11082268
Eze MC, Vafaei LE, Eze CT, Tursoy T, Ozsahin DU, Mustapha MT. Development of a Novel Multi-Modal Contextual Fusion Model for Early Detection of Varicella Zoster Virus Skin Lesions in Human Subjects. Processes. 2023; 11(8):2268. https://doi.org/10.3390/pr11082268
Chicago/Turabian StyleEze, McDominic Chimaobi, Lida Ebrahimi Vafaei, Charles Tochukwu Eze, Turgut Tursoy, Dilber Uzun Ozsahin, and Mubarak Taiwo Mustapha. 2023. "Development of a Novel Multi-Modal Contextual Fusion Model for Early Detection of Varicella Zoster Virus Skin Lesions in Human Subjects" Processes 11, no. 8: 2268. https://doi.org/10.3390/pr11082268
APA StyleEze, M. C., Vafaei, L. E., Eze, C. T., Tursoy, T., Ozsahin, D. U., & Mustapha, M. T. (2023). Development of a Novel Multi-Modal Contextual Fusion Model for Early Detection of Varicella Zoster Virus Skin Lesions in Human Subjects. Processes, 11(8), 2268. https://doi.org/10.3390/pr11082268