Study on Mechanism of MSWI Fly Ash Solidified by Multiple Solid Waste-Based Cementitious Material Using the Rietveld Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Orthogonal Experiment and Analysis
2.2.1. Orthogonal Experimental Design
2.2.2. Range Analysis Method
2.3. Compressive Strength Test
2.4. Leaching Test
2.5. X-ray Powder Diffraction (XRD) Analysis
2.6. Rietveld Method
3. Results and Discussion
3.1. Characterization of MSWI Fly Ash
3.2. Orthogonal Experiment Results Analysis
3.3. Effect of MSWI Fly Ash Proportions on Compressive Strength
3.4. Leaching Toxicity
3.5. Characterization of MSWCM Hydration Products with and without MSWI Fly Ash
3.5.1. XRD Analysis of Hydration Products
3.5.2. Immobilization Mechanism Analysis using Rietveld Method
- Pure MSWCM Paste
Minerals | Chemical Formula | Rietveld Quantitative Results | ||
---|---|---|---|---|
Contents/Mass % | ||||
3 d | 7 d | 28 d | ||
Rwp = 7.55% Rexp = 5.88% | Rwp = 7.35% Rexp = 5.85% | Rwp = 7.36% Rexp = 5.90% | ||
Calcite | CaCO3 | 14.70 (1) a | 13.78 (1) | 12.59 (1) |
Ettringite | 3CaO·Al2O3·3CaSO4·32H2O | 4.15 (1) | 17.90 (1) | 16.90 (1) |
C2S | 2CaO·SiO2 | 20.10 (1) | 20.55 (1) | 17.85 (1) |
C-S-H | Ca5Si6O16(OH)·4H2O | 24.70 (2) | 17.80 (2) | 19.80 (2) |
Gypsum | CaSO4·2H2O | 4.08 (1) | 3.09 (1) | 4.23 (1) |
Hydroxyapatite | Ca5(PO4)3(OH) | 19.87 (1) | 13.40 (1) | 11.29 (1) |
Portlandite | Ca(OH)2 | 0 | 0 | 0 |
Merwinite | 12CaO·7Al2O3 | 9.79 (1) | 9.37 (1) | 11.44 (1) |
Mayenite | Ca12Al14O33 | 0 | 0.39 (2) | 0.55 (2) |
PbO | - | 0.30 (1) | 0.16 (1) | 0.21 (1) |
PbO2 | - | 0 | 0.48 (1) | 0.47 (1) |
C-A-S-H | 3CaO·Al2O3·2SiO2·2H2O | 2.35 (1) | 3.07 (1) | 4.71 (1) |
sum | 100.04 | 100.00 | 100.04 |
- MSWCM Paste with MSWI Fly Ash
Minerals | Chemical Formula | Rietveld Quantitative Results | ||
---|---|---|---|---|
Contents/Mass % | ||||
3 d | 7 d | 28 d | ||
Rwp = 7.81% Rexp = 6.07% | Rwp = 7.77% Rexp = 6.12% | Rwp = 7.70% Rexp = 6.12% | ||
Portlandite | Ca(OH)2 | 0.96 (2) a | 0.17 (1) | 0 |
C-S-H | Ca5Si6O16(OH)·4H2O | 21.8 (1) | 26.2 (1) | 28.0 (1) |
Periclase | MgO | 0.49 (2) | 2.32 (2) | 1.43 (3) |
Halite | NaCl | 11.22 (3) | 12.27 (3) | 6.76 (3) |
Sylvite | KCl | 4.57 (2) | 5.05 (2) | 1.62 (2) |
Mayenite | Ca12Al14O33 | 0.86 (4) | 0 | 0 |
Gypsum | CaSO4·2H2O | 5.52 (4) | 5.17 (4) | 5.79 (4) |
Ettringite | 3CaO·Al2O3·3CaSO4·32H2O | 0 | 2.16 (1) | 0.49 (1) |
Friedel‘s salt | 3CaO·Al2O3·CaCl2·10H2O | 8.53 (5) | 12.68 (5) | 16.17 (6) |
Grossite | CaAl4O7 | 1.36 (3) | 2.09 (5) | 1.08 (3) |
Calcite | CaCO3 | 6.57 (5) | 5.22 (5) | 9.84 (5) |
K3PO4 | - | 8.56 (3) | 6.54 (3) | 8.62 (3) |
PbO2 | - | 0.68 (1) | 0.27 (1) | 0.41 (1) |
AlPO4 | - | 7.07 (1) | 7.57 (1) | 6.71 (1) |
Hydroxyapatite | Ca5(PO4)3(OH) | 7.95 (5) | 6.68 (45) | 8.2 (6) |
CaCl2 | - | 0.28 (1) | 0.52 (1) | 0.39 (1) |
PbHPO4 | - | 0.96 (1) | 0.73 (1) | 0.51 (1) |
Pb3(PO4)2 | - | 0.19 (1) | 0.14 (1) | 0.51 (1) |
C-A-S-H | 3CaO·Al2O3·2SiO2·2H2O | 2.54 (5) | 4.22 (4) | 3.44 (4) |
Carnallite | KCl·MgCl2·6H2O | 9.87 (6) | - | - |
Sum | 100.0 | 100.0 | 100.0 |
4. Conclusions
- (a)
- The optimal mass ratios of BFS:SS:DA:PAS for MSWCM preparation were 36:32:12:20 (w.t.%). The compressive strength of MSWCM with 80% MSWI fly ash content was 2.9 MPa during the 28-day curing period, which met the standard requirements. The leachability of As, Pb, Cr and Zn were far below Toxicity Characteristic Leaching Procedure (TCLP) standard requirement and the threshold value specified in Standard GB16889-2008.
- (b)
- The XRD analysis showed that the phase composition of the hydrated product was relatively complex. The most obvious diffraction peak in the pure MSWCM pastes was calcium carbonate and the main hydration products were hydroxyapatite, ettringite and calcium silicate hydrate (C-S-H and C-A-S-H). In contrast, strong peaks for chlorine salts such as halite and sylvite were observed in the mixed sample of 70% MSWCM and 30% MSWI fly ash. Additionally, small amounts of lead phosphate salts (PbHPO4 and Pb3(PO4)2) were formed.
- (c)
- The refinements of the samples MF0 and MF1 got low Rwp and Rexp values, which indicated that the refinement results were acceptable and reasonable. Most of the hydration reactions had started at the initial stage of curing and reacted quickly to form a large amount of hydration products. For the pure MSWCM paste, the main hydration products were C-S-H, hydroxyapatite and ettringite. With increased curing time, the content of ettringite increased obviously. For the MSWCM paste with MSWI fly ash, the content of C-S-H and Friedel’s salt increased significantly with increased curing time. During a curing period of 3 days to 28 days, the content of C-S-H and Friedel’s salt increased by 22% and 90%, respectively. Phosphate ions reacted with Pb to form a small amount of PbHPO4 and Pb3(PO4)2. It was further confirmed that phosphate had a good curing effect on lead ions. The hydration process could be deduced and evidenced by the changes in the content of the hydration products.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, J.; Sun, Y.; Jin, L. PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renew. Sustain. Energ. Rev. 2017, 80, 276–289. [Google Scholar] [CrossRef]
- Liu, A.; Ren, F.; Lin, W.L.Y.; Wang, J.Y. A review of municipal solid waste environmental standards with a focus on incinerator residues. Int. J. Sustain. Built Environ. 2015, 4, 165–188. [Google Scholar] [CrossRef] [Green Version]
- Moon, M.H.; Kang, D.; Lim, H.; Oh, J.E.; Chang, Y.S. Continuous fractionation of fly ash particles by SPLITT for the investigation of PCDD/Fs levels in different sizes of insoluble particles. Environ. Sci. Technol. 2002, 36, 4416–4423. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Glad, T.; Zhong, Z.Z.; He, R.N.; Tian, J.P.; Chen, L.J. Environmental life-cycle assessment of municipal solid waste incineration stocks in Chinese industrial parks. Resour. Conserv. Recycl. 2018, 139, 387–395. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Sustainable waste management: Waste to energy plant as an alternative to landfill. Energy Convers. Manag. 2017, 131, 18–31. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, Z.; Ren, L.; Zhong, Y.; Zhou, W. Experimental Study on Municipal Solid Waste Incineration Fly Ash in Conjunction with Construction Waste to Burn Ceramics. Environ. Eng. 2023, 1–11. Available online: http://kns.cnki.net/kcms/detail/11.2097.X.20230411.1337.010.html (accessed on 20 June 2023).
- Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D.C.W. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. J. Hazard. Mater. 2021, 411, 125–132. [Google Scholar] [CrossRef]
- Nikravan, M.; Ramezanianpour, A.; Maknoon, R. Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant. J. Environ. Manag. 2020, 260, 110042. [Google Scholar] [CrossRef]
- Loginova, E.; Proskurnin, M.; Brouwers, H.J.H. Municipal solid waste incineration (MSWI) fly ash composition analysis: A case study of combined chelatant-based washing treatment efficiency. J. Environ. Manag. 2019, 235, 480–488. [Google Scholar] [CrossRef]
- Lombardi, F.; Mangialardi, T.; Piga, L. Mechanical and leaching properties of cement solidified hospital solid waste incinerator fly ash. Waste Manag. 1998, 18, 99–106. [Google Scholar] [CrossRef]
- Luo, H.W.; Cheng, Y.; He, D.; Yang, E. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef]
- Bie, R.S.; Chen, P.; Song, X.F.; Ji, X.Y. Characteristics of municipal solid waste incineration fly ash with cement solidificationtreatment. J. Energy Inst. 2016, 89, 704–712. [Google Scholar] [CrossRef]
- Quina, M.J.; Bordado, J.C.; Quinta-Ferreira, R.M. Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manag. 2008, 28, 2097–2121. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Li, J.; Wen, F.; Liu, J. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash. Environ. Pollut. 2019, 250, 68–78. [Google Scholar] [CrossRef]
- Ma, W.; Chen, D.; Pan, M.; Gu, T.; Zhong, L.; Chen, G.; Yan, B.; Cheng, Z. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in mswi fly ash: A comparative study. J. Environ. Manag. 2019, 247, 169–177. [Google Scholar] [CrossRef]
- Leist, M.; Casey, R.J.; Caridi, D. The management of arsenic wastes: Problems and prospects. J. Hazard. Mater. 2000, 76, 125–138. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Zhang, Y.; Ruan, S.; Mechtcherine, V.; Tsang, D.C.W. Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash. Chem. Eng. J. 2022, 430, 132972. [Google Scholar] [CrossRef]
- Gineys, N.; Aouad, G.; Damidot, D. Managing trace elements in Portland cement—Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010, 32, 563–570. [Google Scholar] [CrossRef]
- Tang, P. Stabilization/solidification of municipal solid waste incineration bottom ash. In Low Carbon Stabilization and Solidification of Hazardous Wastes; Tsang, D.C.W., Wang, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 157–174. [Google Scholar]
- Wang, L.; Chen, L.; Cho, D.W.; Tsang, D.C.W.; Yang, J.; Hou, D.; Baek, K.; Kua, H.W.; Poon, C.S. Novel synergy of Si-rich minerals and reactive MgO for stabilization/solidification of contaminated sediment. J. Hazard. Mater. 2019, 365, 695–706. [Google Scholar] [CrossRef]
- Wang, L.; Yu, K.; Li, J.S.; Tsang, D.C.W.; Poon, C.S.; Yoo, J.C.; Baek, K.; Ding, S.; Hou, D.; Dai, J.G. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chem. Eng. J. 2018, 351, 418–427. [Google Scholar] [CrossRef]
- Dutre, V.; Vandecasteele, C. Immobilization mechanism of arsenic in waste solidified by using cement and lime. Environ. Sci. Technol. 1998, 32, 2782–2787. [Google Scholar] [CrossRef]
- Arthur, S.; Saitoh, M.; Pal, S.K. Advances in Civil Engineering: Select Proceedings of ICACE 2020; Springer Nature: Berlin/Heidelberg, Germany, 2021; Volume 184, pp. 55–63. [Google Scholar]
- Abdollahi, S.; Zarei, Z. Reduction of CO2 emission and production costs by using pozzolans in Lamerd cement factory. Iran. J. Chem. Chem. Eng. 2018, 37, 223–230. [Google Scholar]
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Possible applications for municipal solid waste fly ash. J. Hazard. Mater. 2003, 96, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Zhang, S.Q.; Ni, W.; Yan, Q.H.; Gao, W.; Li, Y.Y. Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials. Chemosphere 2019, 223, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Fu, P.; Fang, G.; Zhu, W.; Li, S.; Wang, X.; Xue, T.; Chen, Y. Solidification/Stabilization of MSWI Fly Ash Using a Novel Metallurgical Slag-Based Cementitious Material. Minerals 2022, 12, 599. [Google Scholar] [CrossRef]
- Lampris, C.; Stegemann, J.A.; Cheeseman, C.R. Chloride leaching from air pollution control residues solidified using ground granulated blast furnace slag. Chemosphere 2008, 73, 1544–1549. [Google Scholar] [CrossRef]
- Xia, Z.R.; Lin, J.; Chi, Y.W.; Wang, J.D. Hydrothermal solidification mechanism of calcareous materials and resource utilization of desulfurization ash. Glass Phys. Chem. 2020, 46, 53–63. [Google Scholar]
- Wang, C.Q.; Tan, K.F.; Xu, X.X.; Wang, P.X. Effect of activators, admixtures and temperature on the early hydration performance of desulfurization ash. Constr. Build. Mater. 2014, 70, 322–331. [Google Scholar] [CrossRef]
- Jang, G.G.; Ladshaw, A.; Keum, J.K.; Zhang, P.; Tsouris, C. Continuous-flow centrifugal solid/liquid separation for the recovery of rare-earth elements containing particles from phosphoric acid sludge. Ind. Eng. Chem. Res. 2020, 59, 21901–21913. [Google Scholar] [CrossRef]
- Sugiyama, S.; Imanishi, K.; Shimoda, N.; Liu, J.C.; Satou, H.; Yamamoto, T. Recovery of phosphoric acid and calcium phosphate from dephosphorization slag. J. Chem. Eng. Jpn. 2021, 54, 467–471. [Google Scholar] [CrossRef]
- Fan, C.; Wang, B.; Zhang, T. Review on Cement Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash. Adv. Mater. Sci. Eng. 2018, 2018, 5120649. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Yang, J.; Liu, D.; Zhen, S.; Lin, N.; Zhou, Y. Effects of municipal solid waste incineration fly ash on solidification/stabilization of cd and pb by magnesium potassium phosphate cement. J. Environ. Chem. Eng. 2016, 4, 259–265. [Google Scholar] [CrossRef]
- Buj, I.; Torras, J.; Rovira, M.; Pablo, J.D. Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals. J. Hazard. Mater. 2010, 175, 789–794. [Google Scholar] [CrossRef]
- Mahieux, P.Y.; Aubert, J.E.; Cyr, M.; Coutand, M.; Husson, B. Quantitative mineralogical composition of complex mineral wastes-contribution of the Rietveld method. Waste Manag. 2010, 30, 378–388. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Xia, S.; Lin, R.; Cui, X.; Shan, J. The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition. Int. J. Hydrogen Energy 2016, 41, 11380–11390. [Google Scholar] [CrossRef]
- Taguchi, G.; Phadke, M.S. Quality Engineering through Design Optimization. In Quality Control, Robust Design, and the Taguchi Method; Springer: Berlin/Heidelberg, Germany, 1989; pp. 77–96. [Google Scholar]
- Taut, T.; Kleeberg, R.; Bergmann, J. The new seifert Rieveld program BGMN and its application to quantitative phase analysis. Mater. Struct. 1998, 5, 57–66. [Google Scholar]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN-a new fundamental parameters based Rietveld program for laboratory X-ray sources; it’s use in quantitative analysis and structure investigations. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Fan, C.; Wang, B.; Qi, Y.; Liu, Z. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Manag. 2021, 131, 277–285. [Google Scholar] [CrossRef]
- Ren, P.; Ling, T.C. Roles of chlorine and sulphate in MSWIFA in GGBFS binder: Hydration, mechanical properties and stabilization considerations. Environ. Pollut. 2021, 284, 117175. [Google Scholar] [CrossRef]
- Forestier, L.; Libourel, G. Characterization of flue gas residues from municipal solid waste combustors. Environ. Sci. Technol. 1998, 32, 2250–2256. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013, 40, 291–298. [Google Scholar] [CrossRef]
- Patil, A.A.; Chore, H.S.; Dodeb, P.A. Effect of curing condition on strength of geopolymer concrete. Adv. Concrete Constr. 2014, 2, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zhang, Z.; Wang, M.; Guo, G.; Du, P.; Li, F. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium. Front. Environ. Sci. Eng. 2018, 12, 10. [Google Scholar] [CrossRef]
- Cao, X.; Wang, W.; Ma, R.; Sun, S.; Lin, J. Solidification/stabilization of Pb(2+) and Zn(2+) in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions. Environ. Pollut. 2019, 253, 171–180. [Google Scholar] [CrossRef]
Levels | Factors | ||
---|---|---|---|
Mass Proportions | |||
SS/% | DA/% | PAS/% | |
1 | 28 | 8 | 20 |
2 | 32 | 10 | 26 |
3 | 36 | 12 | 32 |
4 | 40 | 14 | 38 |
Sample ID | Levels | Mass Proportion of BFS/% | ||
---|---|---|---|---|
SS | DA | PAS | ||
O1 | 1 | 1 | 1 | 44 |
O2 | 1 | 2 | 2 | 36 |
O3 | 1 | 3 | 3 | 28 |
O4 | 1 | 4 | 4 | 20 |
O5 | 2 | 1 | 2 | 34 |
O6 | 2 | 2 | 1 | 38 |
O7 | 2 | 3 | 4 | 18 |
O8 | 2 | 4 | 3 | 22 |
O9 | 3 | 1 | 3 | 24 |
O10 | 3 | 2 | 4 | 16 |
O11 | 3 | 3 | 1 | 32 |
O12 | 3 | 4 | 2 | 24 |
O13 | 4 | 1 | 4 | 14 |
O14 | 4 | 2 | 3 | 18 |
O15 | 4 | 3 | 2 | 22 |
O16 | 4 | 4 | 1 | 26 |
Oxide (%) | CaO | SiO2 | Al2O3 | Cl | SO3 | Fe2O3 | Na2O | K2O | MgO |
---|---|---|---|---|---|---|---|---|---|
39.08 | 1.94 | 0.31 | 29.17 | 7.37 | 1.46 | 7.03 | 10.58 | 0.56 | |
Heavy metal (mg/kg) | Pb | Zn | As | Cr | Hg | ||||
1769.9 | 5636.2 | 45.7 | 34.3 | 2.4 |
Halite | Sylving | Calcium Chloride Hydroxide | Portlandite | Calcite | Gypsum | Rwp/% | Rexp/% | |
---|---|---|---|---|---|---|---|---|
NaCl | KCl | CaClOH | Ca(OH)2 | CaCO3 | CaSO4·2H2O | |||
Phase content/w.t.% | 34.2 (2) a | 14.3 (1) | 24.6 (2) | 16.5 (1) | 7.6 (5) | 2.8 (7) | 10.25 | 5.26 |
Levels | Compressive Strength/Mpa | ||
---|---|---|---|
SS | DA | PAS | |
K1 | 81.8 | 74.9 | 95 |
K2 | 83.7 | 80.7 | 81.4 |
K3 | 73.1 | 81.3 | 71.7 |
K4 | 75.8 | 77.5 | 66.3 |
k1 | 20.45 | 18.73 | 23.75 |
k2 | 20.93 | 20.18 | 20.35 |
k3 | 18.28 | 20.33 | 17.93 |
k4 | 18.95 | 19.38 | 16.58 |
Range | 2.65 | 1.6 | 7.17 |
Ranking | PAS > SS > DA | ||
Optimum theme | SS2 DA3 PAS1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fu, P.; Deng, W.; Shi, J.; Xu, M. Study on Mechanism of MSWI Fly Ash Solidified by Multiple Solid Waste-Based Cementitious Material Using the Rietveld Method. Processes 2023, 11, 2311. https://doi.org/10.3390/pr11082311
Wang X, Fu P, Deng W, Shi J, Xu M. Study on Mechanism of MSWI Fly Ash Solidified by Multiple Solid Waste-Based Cementitious Material Using the Rietveld Method. Processes. 2023; 11(8):2311. https://doi.org/10.3390/pr11082311
Chicago/Turabian StyleWang, Xiaoli, Pingfeng Fu, Wei Deng, JinJin Shi, and Miao Xu. 2023. "Study on Mechanism of MSWI Fly Ash Solidified by Multiple Solid Waste-Based Cementitious Material Using the Rietveld Method" Processes 11, no. 8: 2311. https://doi.org/10.3390/pr11082311
APA StyleWang, X., Fu, P., Deng, W., Shi, J., & Xu, M. (2023). Study on Mechanism of MSWI Fly Ash Solidified by Multiple Solid Waste-Based Cementitious Material Using the Rietveld Method. Processes, 11(8), 2311. https://doi.org/10.3390/pr11082311