Vacuum-Packed Pork Sausages with Modified Casing Added with Orange Peel Extracts: Evaluating In Vitro Antioxidant Activity via Hyperspectral Imaging Coupled with Chemometrics
Abstract
:1. Introduction
- (1)
- Research and analysis in the food industry often explore various aspects of food quality, including the stability and preservation of food products over time.
- (2)
- Investigating the antioxidant activity of sausages stored for an extended period can provide insights into the oxidative stability of the product and its potential shelf life.
- (3)
- Antioxidants play a role in inhibiting or slowing down oxidative processes that can lead to changes in flavor, color, texture, and overall quality of food products. By evaluating the antioxidant activity of sausages, researchers can gain a better understanding of the oxidative processes occurring during storage and potential strategies for improving the product’s stability.
2. Materials and Methods
2.1. Orange Crude Extraction and Casing Modification Solution Preparation
2.2. Preparation of Pork Sausages Using Modified Casing and Controlled Natural Casing
2.3. In Vitro Antioxidant Activity of Pork Sausages with Different Types of Casings
2.4. Hyperspectral Data Extraction and Processing
2.5. Data Pretreatment & Partial Least Square Regression Model Development and Estimation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Simultaneous Effects on In Vitro Antioxidant Activity of Sausages with Different Casings
3.2. Overview of Extracted Spectra
3.3. PLSRM Model Performance
4. Conclusions
- (1)
- Response surface methodology was employed to study the impact of different modification processes with varying concentrations of extracts addition from orange peel on the in vitro antioxidant activity of sausages. The model achieved an R2 value of 65.28% with no significant lack of fit. The values of the DPPH assay can achieve over 35% when a high soy lecithin concentration (>1:25) was associated with a high extract addition from orange peel (>0.3%).
- (2)
- The average reflectance of sausages with treatment 26 (central point) was higher than that of the control group using natural hog casing.
- (3)
- PLSRM developed from the average spectra achieved comparably higher than that using full spectra.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, C.H. Quality evaluation and mathematical modelling approach to estimate the growth parameters of total viable count in sausages with different casings. Foods 2022, 11, 634. [Google Scholar] [PubMed]
- Feng, C.H.; Drummond, L.; Zhang, Z.H. Evaluation of innovative immersion vacuum cooling with different pressure reduction rates and agitation for cooked sausages stuffed in natural or artificial casing. LWT Food Sci. Technol. 2014, 59, 77–85. [Google Scholar] [CrossRef]
- Feng, C.H.; Drummond, L.; Sun, D.W.; Zhang, Z.-H. Evaluation of natural hog casings modified by surfactant solutions combined with lactic acid by response surface methodology. LWT Food Sci. Technol. 2014, 58, 427–438. [Google Scholar]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar]
- Serdaroğlu, M.; Can, H.; Sari, B.; Kavuşan, H.S.; Yılmaz, F.M. Effects of natural nitrite sources from arugula and barberry extract on quality characteristic of heat-treated fermented sausages. Meat Sci. 2023, 198, 109090. [Google Scholar]
- Cenci-Goga, B.T.; Rossitto, P.V.; Sechi, P.; Parmegiani, S.; Cambiotti, V.; Cullor, J.S. Effect of selected dairy starter cultures on microbiological, chemical and sensory characteristics of swine and venison (Dama dama) nitrite-free dry-cured sausages. Meat Sci. 2012, 90, 599–606. [Google Scholar] [PubMed]
- García-Martín, J.F.; Olmo, M.; García, J.M. Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility. Postharvest. Biol. Technol. 2018, 137, 77–85. [Google Scholar] [CrossRef]
- García, J.F.; Olmo, M.; García, J.M. Decay incidence and quality of different citrus varieties after postharvest heat treatment at laboratory and industrial scale. Postharvest. Biol. Technol. 2016, 118, 96–102. [Google Scholar] [CrossRef]
- Xu, M.L.; Ran, L.; Chen, N.; Fan, X.W.; Ren, D.B.; Yi, L.Z. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar]
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar]
- Ishiwata, N.; Feng, L.; Yian, N.; Yoshida, M.; Palihakkara, I.R.; Silva, N.; Tanaka, H.; Nga, N.T. Reduction of Waste from Beverage Industry in Shizuoka Prefecture. Available online: http://www.iai.ga.a.u-tokyo.ac.jp/mizo/lecture/noukoku-1/group-work/2012/G2_e.pdf (accessed on 31 January 2013).
- Feng, C.-H.; Otani, C.; Ogawa, Y. Innovatively identifying naringin and hesperidin by using terahertz spectroscopy and evaluating flavonoids extracts from waste orange peels by coupling with multivariate analysis. Food Control 2022, 137, 108897. [Google Scholar]
- Sammani, M.S.; Cerdà, V. Sample pre-treatment and flavonoids analytical methodologies for the quality control of foods and pharmaceutical matrices. In The Book of Flavonoids, 1st ed.; Feng, C.-H., García Martín, J.F., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2021; Chapter 1; pp. 1–130. [Google Scholar]
- Bellavite, P.; Donzelli, A. Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits. Antioxidants 2020, 9, 742. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE-MS/MS. Food Chem. 2009, 116, 567–574. [Google Scholar] [CrossRef]
- Li, X.W.; Geng, M.M.; Peng, Y.Z.; Meng, L.S.; Lu, S.M. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [PubMed]
- Manzoor, A.; Ahmad, S.; Yousuf, B. Effect of bioactive-rich mango peel extract on physicochemical, antioxidant and functional characteristics of chicken sausage. Appl. Food Biotechnol. 2022, 2, 100183. [Google Scholar]
- Manzoor, A.; Haque, A.; Ahmad, S.; Hopkins, D.L. Incorporation of betel leaf extract provides oxidative stability and improves phytochemical, textural, sensory and antimicrobial activities of buffalo meat sausages. Meat Sci. 2023, 200, 109157. [Google Scholar]
- Mokhtar, S.M.; Youssef, K.M. Antioxidant effect of some plant extracts as compared with BHA/BHTon lipidoxidation andsomequality properties of fresh beef burgers stored at 4 °C. Suez Canal Univ. J. Food Sci. 2014, 2, 19–29. [Google Scholar]
- Rodríguez-Pulido, F.J.; Gordillo, B.; Heredia, F.J.; González-Miret, M.L. CIELAB—Spectral image matching: An app for merging colorimetric and spectral images for grapes and derivatives. Food Control 2021, 125, 108038. [Google Scholar] [CrossRef]
- Rodríguez-Pulido, F.J.; Hernández-Hierro, J.M.; Nogales-Bueno, J.; Gordillo, B.; González-Miret, M.L.; Heredia, F.J. A novel method for evaluating flavanols in grape seeds by near infrared hyperspectral imaging. Talanta 2014, 122, 145–150. [Google Scholar] [PubMed]
- Rodríguez-Pulido, F.J.; Mora-Garrido, A.B.; González-Miret, M.L.; Heredia, F.J. Research progress in imaging technology for assessing quality in wine grapes and seeds. Foods 2022, 11, 254. [Google Scholar] [PubMed]
- Hu, M.-H.; Dong, Q.-L.; Liu, B.-L. Classification and characterization of blueberry mechanical damage with time evolution using reflectance, transmittance and interactance imaging spectroscopy. Comput. Electron. Agric. 2016, 122, 19–28. [Google Scholar]
- Hu, M.-H.; Dong, Q.-L.; Liu, B.-L.; Opara, U.L. Prediction of mechanical properties of blueberry using hyperspectral interactance imaging. Postharvest Biol. Technol. 2016, 115, 122–131. [Google Scholar]
- Cheng, J.H.; Sun, J.; Yao, K.S.; Xu, M.; Tian, Y.; Dai, C.X. A decision fusion method based on hyperspectral imaging and electronic nose techniques for moisture content prediction in frozen-thawed pork. LWT Food Sci. Technol. 2022, 165, 113778. [Google Scholar] [CrossRef]
- Zhuang, Q.B.; Peng, Y.K.; Yang, D.Y.; Wang, Y.L.; Zhao, R.H.; Chao, K.L.; Guo, Q.H. Detection of frozen pork freshness by fluorescence hyperspectral image. J. Food Eng. 2022, 316, 110840. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, J.; Yao, K.S.; Xu, M.; Zhou, X. Nondestructive detection and visualization of protein oxidation degree of frozen-thawed pork using fluorescence hyperspectral imaging. Meat Sci. 2022, 194, 108975. [Google Scholar]
- Song, K.; Wang, S.-H.; Yang, D.; Shi, T.-Y. Combination of spectral and image information from hyperspectral imaging for the prediction and visualization of the total volatile basic nitrogen content in cooked beef. J. Food Meas. Charact. 2021, 15, 4006–4020. [Google Scholar] [CrossRef]
- Xie, A.G.; Sun, J.; Wang, T.M.; Liu, Y.H. Visualized detection of quality change of cooked beef with condiments by hyperspectral imaging technique. Food Sci. Biotechnol. 2022, 31, 1257–1266. [Google Scholar] [CrossRef]
- Ahmed, M.; Reed, D.D.; Young, J.M.; Eshkabilov, S.; Berg, E.P.; Sun, X. Beef quality grade classification based on intramuscular fat content using hyperspectral imaging technology. Appl. Sci. 2021, 11, 4588. [Google Scholar] [CrossRef]
- Wan, G.-L.; Fan, S.-X.; Liu, G.S.; He, J.G.; Wang, W.; Li, Y.; Cheng, L.J.; Ma, C.; Guo, M. Fusion of spectra and texture data of hyperspectral imaging for prediction of myoglobin content in nitrite-cured mutton. Food Control 2023, 144, 109332. [Google Scholar]
- Zhang, J.J.; Ma, Y.H.; Liu, G.S.; Fan, N.Y.; Li, Y.; Sun, Y.R. Rapid evaluation of texture parameters of Tan mutton using hyperspectral imaging with optimization algorithms. Food Control 2022, 135, 108815. [Google Scholar] [CrossRef]
- Zhang, J.J.; Liu, G.S.; Li, Y.; Guo, M.; Pu, F.N.; Wang, H. Rapid identification of lamb freshness grades using visible and near-infrared spectroscopy (Vis-NIR). J. Food Compos. Anal. 2022, 111, 104590. [Google Scholar]
- Ma, F.; Zhang, B.; Wang, W.; Li, P.J.; Niu, X.L.; Chen, C.; Zheng, L. Potential use of multispectral imaging technology to identify moisture content and water-holding capacity in cooked pork sausages. J. Sci. Food Agric. 2018, 98, 1832–1838. [Google Scholar] [PubMed]
- Aheto, J.H.; Huang, X.Y.; Tian, X.Y.; Ren, Y.; Bonah, E.; Alenyorege, E.A.; Lv, R.Q.; Dai, C.X. Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat. J. Food Process Eng. 2019, 42, e13225. [Google Scholar]
- Liu, S.J.; Dong, F.J.; Hao, J.; Qiao, L.; Guo, J.H.; Wang, S.L.; Luo, R.M.; Lv, Y.; Cui, J.R. Combination of hyperspectral imaging and entropy weight method for the comprehensive assessment of antioxidant enzyme activity in Tan mutton. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 291, 122342. [Google Scholar]
- Feng, C.H.; Makino, Y.; García-Martín, J.F. Hyperspectral imaging coupled with multivariate analysis and image processing for detection and visualisation of colour in cooked sausages stuffed with different modified casings. Foods 2020, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.H.; Makino, Y.; Yoshimura, M.; Rodríguez-Pulido, F.J. Real-time prediction of pre-cooked Japanese sausages color with different storage days using hyperspectral imaging. J. Sci. Food Agric. 2018, 98, 2564–2572. [Google Scholar]
- Feng, C.H.; Makino, Y.; Yoshimura, M.; Thuyet, D.C.; García-Martín, J.F. Hyperspectral imaging in tandem with R statistics and image processing for detection and visualisation of pH in Japanese big sausages under different storage conditions. J. Food Sci. 2018, 83, 358–366. [Google Scholar]
- Feng, C.H.; Arai, H.; Rodríguez-Pulido, F.J. Evaluation of pH in sausages stuffed in a modified casing with orange extracts by hyperspectral imaging coupled with response surface methodology. Foods 2022, 11, 2797. [Google Scholar] [CrossRef]
- Feng, C.H.; Makino, Y.; Yoshimura, M.; Rodríguez-Pulido, F.J. Estimation of adenosine triphosphate content in ready-to-eat sausages with different storage days, using hyperspectral imaging coupled with R statistics. Food Chem. 2018, 264, 419–426. [Google Scholar]
- Feng, C.H.; García-Martín, J.F.; Lavado, M.B.; López-Barrera, M.C.; Álvarez-Mateos, P. Evaluation of different solvents on flavonoids extraction efficiency from sweet oranges and ripe and immature Seville oranges. Int. J. Food Sci. 2020, 55, 3123–3134. [Google Scholar] [CrossRef]
- Cazón, P.; Antoniewska, A.; Rutkowska, J.; Vázquez, M. Evaluation of easy-removing antioxidant films of chitosan with Melaleuca alternifolia essential oil. Int. J. Biol. Macromol. 2021, 186, 365–376. [Google Scholar] [PubMed]
- Groussard, C.; Morel, I.; Chevanne, M.; Monnier, M.; Cillard, J.; Delamarche, A. Free radical scavenging and antioxidant effects of lactate ion: An in vitro study. J. Appl. Physiol. 2000, 89, 169–175. [Google Scholar]
- Ramadan, M.F. Antioxidant characteristics of phenolipids (quercetin-enriched lecithin) in lipid matrices. Ind. Crops. Prod. 2012, 36, 363–369. [Google Scholar]
- Tran, T.T.T.; Ton, N.M.N.; Nguyen, T.T.; Sajeev, D.; Schilling, M.W.; Dinh, T.T. Application of natural antioxidant extract from guava leaves (Psidium guajava L.) in fresh pork sausage. Meat Sci. 2020, 165, 108106. [Google Scholar] [PubMed]
- Bellucci, E.R.B.; Munekata, P.E.; Pateiro, M.; Lorenzo, J.M.; da Silva Barretto, A.C. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Sci. 2021, 171, 108284. [Google Scholar] [PubMed]
- Feng, C.H.; Arai, H. Evaluation of hesperidin on sausages stuffed in a new modified casing during long-term storage—A preliminary study. Sustainability 2022, 14, 9071. [Google Scholar] [CrossRef]
- Feng, C.H.; Arai, H. Estimating moisture content of sausages with different types of casings via hyperspectral imaging in tandem with multivariate. Appl. Sci. 2023, 13, 5300. [Google Scholar]
- Sanz, J.A.; Fernandes, A.M.; Barrenechea, E.; Silva, S.; Santos, V.; Gonçalves, N.; Paternain, D.; Jurio, A.; Melo-Pinto, P. Lamb muscle discrimination using hyperspectral imaging: Comparison of various machine learning algorithms. J. Food Eng. 2016, 174, 92–100. [Google Scholar]
- Jamil, Z.; Mohite, A.; Sharma, N. Selected engineering properties and drying behavior of tendu (diospyros melanoxylon roxb.) fruit. Curr. Res. Nutr. Food Sci. 2020, 8, 622–629. [Google Scholar]
- Jia, B.B.; Yoon, S.-C.; Zhuang, H.; Wang, W.; Li, C.Y. Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging. J. Food Eng. 2017, 08, 57–65. [Google Scholar]
- Feng, C.H. Optimizing procedures of ultrasound-assisted extraction of waste orange peels by response surface methodology. Molecules 2022, 27, 2268. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Riccioli, C.; Sun, D.-W. Development of an alternative technique for rapid and accurate determination of fish caloric density based hyperspectral imaging. J. Food Eng. 2016, 190, 185–194. [Google Scholar]
- Helland, I.S.; Næs, T.; Isaksson, T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemom. Intell. Lab. Syst. 1995, 29, 233–241. [Google Scholar] [CrossRef]
Coded Variable Level | Factors | |||||
---|---|---|---|---|---|---|
SLC (%, w/w, Xa) | SOC (%, w/w, Xb) | Treated Time (min, Xc) | Lactic Acid Addition (mL/kg NaCl Xd) | EFOP Addition (%, w/w, Xe) | ||
Star | −2 | 1:90 | 0.6 | 45 | 16.5 | 0 |
Low | −1 | 1:45 | 1.18 | 60 | 18 | 0.12 |
Center | 0 | 1:30 | 1.78 | 75 | 19.5 | 0.26 |
High | 1 | 1:22.5 | 2.39 | 90 | 21 | 0.40 |
Star | 2 | 1:18 | 2.94 | 105 | 22.5 | 0.54 |
Sausage Filling Composition | Concentration (%) |
---|---|
Lean pork | 57.70 |
Back fat | 24.69 |
Chinese white wine (52% of ethanol content, v/v) | 10.31 |
Salt | 2.87 |
Sugar | 1.72 |
Spicy red pepper | 0.61 |
Black pepper | 1.06 |
Coriander powder | 0.34 |
Garam masala powder | 0.34 |
Turmeric powder | 0.34 |
Coded Coefficients | ||||||
---|---|---|---|---|---|---|
Term | Coefficients | SE Coefficients | 95% CI | t-Value | p-Value | VIF |
Constant | 38.07 | 2.56 | (32.44, 43.71) | 14.86 | 0.000 | |
SLC (%, w/w, Xa) | −0.63 | 1.31 | (−3.51, 2.26) | −0.48 | 0.642 | 1 |
SOC (%, w/w, Xb) | −1.5 | 1.31 | (−4.38, 1.39) | −1.14 | 0.278 | 1 |
Treated Time (min, Xc) | −0.32 | 1.31 | (−3.20, 2.57) | −0.24 | 0.812 | 1 |
Lactic acid addition (mL/kg NaCl Xd) | −1.17 | 1.31 | (−4.06, 1.71) | −0.89 | 0.390 | 1 |
EFOP addition (%, w/w, Xe) | 0.27 | 1.31 | (−2.62, 3.15) | 0.21 | 0.841 | 1 |
−1.38 | 1.19 | (−3.99, 1.23) | −1.16 | 0.27 | 1.02 | |
−1.94 | 1.19 | (−4.55, 0.67) | −1.63 | 0.131 | 1.02 | |
−1.64 | 1.19 | (−4.25, 0.97) | −1.38 | 0.195 | 1.02 | |
−1.21 | 1.19 | (−3.82, 1.40) | −1.02 | 0.331 | 1.02 | |
−1.5 | 1.19 | (−4.11, 1.11) | −1.26 | 0.233 | 1.02 | |
Xa × Xb | 0.38 | 1.61 | (−3.15, 3.91) | 0.24 | 0.817 | 1 |
Xa × Xc | −2.02 | 1.61 | (−5.55, 1.52) | −1.26 | 0.235 | 1 |
Xa × Xd | −2.96 | 1.61 | (−6.49, 0.57) | −1.84 | 0.092 | 1 |
Xa × Xe | −2.73 | 1.61 | (−6.27, 0.80) | −1.7 | 0.117 | 1 |
Xb × Xc | 0.53 | 1.61 | (−3.00, 4.06) | 0.33 | 0.748 | 1 |
Xb × Xd | 0.08 | 1.61 | (−3.46, 3.61) | 0.05 | 0.963 | 1 |
Xb × Xe | −1.99 | 1.61 | (−5.52, 1.54) | −1.24 | 0.241 | 1 |
Xc × Xd | −2.3 | 1.61 | (−5.84, 1.23) | −1.43 | 0.179 | 1 |
Xc × Xe | −0.09 | 1.61 | (−3.62, 3.44) | −0.06 | 0.956 | 1 |
Xd × Xe | 0.56 | 1.61 | (−2.98, 4.09) | 0.35 | 0.735 | 1 |
Treated Sample | DPPH (%) |
---|---|
1 | 46.76 ± 0.12 a |
2 | 31.67 ± 0.27 cdefghi |
3 | 32.08 ± 0.64 bcdefgh |
4 | 33.15 ± 0.43 bcdefg |
5 | 29.27 ± 0.14 efghi |
6 | 36.18 ± 3.93 bcd |
7 | 34.22 ± 0.99 bcdef |
8 | 29.93 ± 6.19 defghi |
9 | 34.81 ± 0.89 bcdef |
10 | 26.57 ± 0.10 hi |
11 | 35.70 ± 1.83 bcde |
12 | 38.33 ± 4.69 b |
13 | 33.19 ± 0.38 bcdefg |
14 | 28.05 ± 0.10 efghij |
15 | 32.26 ± 0.36 bcdefgh |
16 | 31.23 ± 1.88 cdefghi |
17 | 27.09 ± 0.73 ghi |
18 | 20.10 ± 3.63 jk |
19 | 32.60 ± 2.26 bcdefg |
20 | 14.07 ± 1.11 k |
21 | 34.81 ± 4.74 bcdef |
22 | 38.36 ± 2.18 b |
23 | 33.22 ± 1.06 bcdefg |
24 | 33.52 ± 0.76 bcdefg |
25 | 32.08 ± 0.30 bcdefgh |
26 | 49.68 ± 0.65 a |
27 | 37.40 ± 0.90 bc |
28 | 33.15 ± 0.68 bcdefg |
29 | 28.60 ± 0.50 fghi |
30 | 25.20 ± 0.82 ij |
31 | 29.27 ± 3.63 cdefghi |
32 | 31.89 ± 6.15 efghi |
Control | 32.64 ± 0.86 bcdefg |
Treatments | Calibration Group | Prediction Group | Cross-Validation | ||||
---|---|---|---|---|---|---|---|
Rc2 | Root Mean Square Error of Calibration (%) | Rp2 | Root Mean Square Error of Prediction (%) | Rcv2 | Root Mean Square Error of Cross-Validation (%) | ||
Full wavelengths (n = 75) | Raw data (untreated) | 0.218 | 5.208 | 0.165 | 6.633 | 0.202 | 5.695 |
MSCT | 0.211 | 5.231 | 0.136 | 6.7461 | 0.191 | 5.735 | |
1st Derivation | 0.056 | 5.719 | Na | 7.289 | 0.033 | 6.270 | |
SNVT | 0.319 | 4.856 | 0.103 | 6.876 | 0.303 | 5.324 | |
2nd Derivation | 0.115 | 5.539 | 0.035 | 7.131 | 0.102 | 6.043 | |
Normalization | 0.232 | 5.160 | 0.146 | 6.707 | 0.212 | 5.659 | |
SNVT + Normalization | 0.002 | 5.882 | 0.009 | 7.225 | 0.07 | 6.354 | |
Normalization + SNVT | 0.319 | 4.860 | 0.103 | 6.876 | 0.303 | 5.324 | |
Average wavelengths (n = 37) | Raw data (untreated) | 0.368 | 3.336 | 0.067 | 8.190 | 0.030 | 5.054 |
MSCT | 0.340 | 3.410 | 0.092 | 8.080 | 0.304 | 5.041 | |
1st Derivation | 0.497 | 2.976 | 0.188 | 7.639 | 0.421 | 4.600 | |
SNVT | 0.334 | 3.426 | 0.160 | 7.772 | 0.302 | 5.048 | |
2nd Derivation | 0.385 | 3.293 | 0.036 | 8.327 | 0.405 | 4.661 | |
Normalization | 0.299 | 3.514 | 0.087 | 8.100 | 0.011 | 6.009 | |
SNVT + Normalization | 0.031 | 5.949 | 0.030 | 2.8594 | 0.2060 | 2.0531 | |
Normalization + SNVT | 0.334 | 3.426 | 0.160 | 7.772 | 0.395 | 4.701 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.-H. Vacuum-Packed Pork Sausages with Modified Casing Added with Orange Peel Extracts: Evaluating In Vitro Antioxidant Activity via Hyperspectral Imaging Coupled with Chemometrics. Processes 2023, 11, 2583. https://doi.org/10.3390/pr11092583
Feng C-H. Vacuum-Packed Pork Sausages with Modified Casing Added with Orange Peel Extracts: Evaluating In Vitro Antioxidant Activity via Hyperspectral Imaging Coupled with Chemometrics. Processes. 2023; 11(9):2583. https://doi.org/10.3390/pr11092583
Chicago/Turabian StyleFeng, Chao-Hui. 2023. "Vacuum-Packed Pork Sausages with Modified Casing Added with Orange Peel Extracts: Evaluating In Vitro Antioxidant Activity via Hyperspectral Imaging Coupled with Chemometrics" Processes 11, no. 9: 2583. https://doi.org/10.3390/pr11092583
APA StyleFeng, C. -H. (2023). Vacuum-Packed Pork Sausages with Modified Casing Added with Orange Peel Extracts: Evaluating In Vitro Antioxidant Activity via Hyperspectral Imaging Coupled with Chemometrics. Processes, 11(9), 2583. https://doi.org/10.3390/pr11092583