Properties of Cement Thermal Insulation Materials Containing Tailing Waste for Connecting Mines Assessed Using the Orthogonal Method with the Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pilot Program Design
2.3. Composite Heat Insulation Material Preparation
2.4. Test Method
2.4.1. Compressive Strength
2.4.2. Thermal Conductivity
2.4.3. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Compressive Strength Analysis
3.2. Thermal Conductivity Analysis
3.3. Orthogonal Experiment Result Analysis
3.4. Microtext Analysis
3.5. Model Fit Analysis
3.5.1. Non-linear Fitting Analysis
3.5.2. Visualization and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ranjith, P.G.; Jian, Z.; Ju, M. Opportunities and Challenges in Deep Mining: A Brief Review. Engineering 2017, 3, 546–551. [Google Scholar] [CrossRef]
- Li, X.B.; Zhou, J.; Wang, S.F.; Liu, B. Review and practice of deep mining for solid mineral resources. Chin. J. Nonferrous Met. 2017, 27, 27. [Google Scholar]
- You, S.; Sun, J.; Ji, H. Analysis of Thermal Environment and Its Influencing Factors in Deep Stope of Metal Mine. Geofluids 2022, 2022, 6408714. [Google Scholar] [CrossRef]
- Roghanchi, P.; Kocsis, K.C. Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines. Saf. Health Work 2017, 9, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Tu, R.; Huang, L.; Jin, A. Characteristic studies of heat sources and performance analysis of free-cooling assisted air conditioning and ventilation systems for working faces of mineral mines. Build. Simul. 2021, 14, 12. [Google Scholar] [CrossRef]
- Zhou, Z.; Cui, Y.; Tian, L. Study of the Influence of Ventilation Pipeline Setting on Cooling Effects in High-Temperature Mines. Energies 2019, 12, 4074. [Google Scholar] [CrossRef]
- Dingyi, W.; Cuifeng, D.; Haiyue, X. Influencing factors and correlation analysis of ventilation and cooling in deep excavation roadway. Case Stud. Therm. Eng. 2023, 14, 100483. [Google Scholar] [CrossRef]
- Chu, Z.; Ji, J.; Zhang, X. Development of ZL 400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face. Arch. Min. Sci. 2016, 61, 949–966. [Google Scholar]
- Van Staden, H.J.; Van Rensburg, J.F.; Groenewald, H.J. Optimal use of mobile cooling units in a deep-level gold mine. Int. J. Min. Sci. Technol. 2020, 30, 547–553. [Google Scholar] [CrossRef]
- Xin, S.; Han, X.; Li, S. Application of Data Envelopment Analysis in the Ventilation and Cooling Efficiency Evaluation of Hot Development Headings. Processes 2022, 10, 1375. [Google Scholar] [CrossRef]
- Agus, P.S.; Jundika, C.K.; Erik, B. Computational evaluation of thermal management strategies in an underground mine. Appl. Therm. Eng. 2015, 90, 1144–1150. [Google Scholar]
- Abu-Jdayil, B.; Mourad, A.H.; Hittini, W. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Villasmil, W.; Fischer, L.J.; Worlitschek, J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 2023, 103, 71–84. [Google Scholar] [CrossRef]
- Liu, Z.; Lyu, J.; Fang, D.; Zhang, X. Threads for Thermal Insulation in Harsh Environments. ACS Nano 2019, 13, 5703–5711. [Google Scholar] [CrossRef] [PubMed]
- Abderraouf, T.; Zied, K. Mechanical properties and impact resistance of a high-strength lightweight concrete incorporating prickly pear fibres. Constr. Build. Mater. 2020, 262, 119972. [Google Scholar]
- Feng, J.; Zhang, C.; Feng, J. Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 2011, 67, 266–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S.; Zhang, X. Development of a novel heat barrier coating for deep mining application. Aust. J. Mech. Eng. 2018, 16, 112–116. [Google Scholar] [CrossRef]
- Yao, W.; Lyimo, H.; Pang, J. Evolution regularity of temperature field of active heat insulation roadway considering thermal insulation spraying and grouting: A case study of Zhujidong Coal Mine. High Temp. Mater. Process. 2021, 40, 151–170. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, S.Y.; Zhu, S.X. Temperature Field Distribution Model and Analysis of the lnfluencing Factors of Heat Adjustment Circle of Wall Rock in Roadway. Ind. Saf. Environ. Prot. 2017, 43, 21–24. [Google Scholar]
- Hou, C.; Xin, S.; Zhang, L. Foundation Research on Physicochemical Properties of Mine Insulation Materials. Coatings 2020, 4, 355. [Google Scholar] [CrossRef]
- Guo, S.; Huang, R. The AHP Method of Orthogonal Trial. Coll. Math. 2004, 20, 114–117. [Google Scholar] [CrossRef]
- Dai, X.; Guo, J. Orthogonal optimal design and analysis of RPCVD simulation by CFD. J. Xidian Univ. 2013, 40, 72–78. [Google Scholar]
- Lan, W.; Wu, A.; Wang, Y.; Lil, J. Optimization of filling ratio of hemihydrate phosphogypsum based on orthogonal test. Chin. J. Nonferrous Met. 2019, 29, 1083–1091. [Google Scholar]
- Pang, J.; Yao, W.; Wang, L. Orthogonal Experiment and Regression Analysis on Ultra-fine Fly Ash Grouting Material for Teating Coal Mine Goaf. J. Yangtze River Sci. Res. 2018, 35, 103–108. [Google Scholar]
- Zhao, C. Experimental Investigation on Process Parameters during Laser-Assisted Turning of SiC Ceramics Based on Orthogonal Method and Response Surface Methodology. Materials 2022, 15, 4889. [Google Scholar]
- Huang, X.; Wang, T. Parameter Optimization of Laser Polishing Based on Orthogonal Experiment and Response Surface Method. Laser Optoelectron. Prog. 2022, 59, 316–325. [Google Scholar]
- Chaker, H.; Attar, A.E.; Djennas, M. A statistical modeling-optimization approach for efficiency photocatalytic degradation of textile azo dye using Cerium-doped mesoporous ZnO: A Central Composite Design in Response Surface Methodology. Chem. Eng. Res. Des. 2021, 171, 198–212. [Google Scholar] [CrossRef]
- Charyulu, N.C.B.; Saheb, S.K.A. A New Class of Second Order Response Surface Designs. Int. J. Appl. Math. Stat. 2018, 57, 115123–115132. [Google Scholar]
- Gao, L.; Yang, X. Optimization of the process for preparing sodium silicate from serpentine silicon-rich slag based on the Box-Behnken response surface method. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 3802–3810. [Google Scholar]
- Ye, J.; Zhang, W.; Shi, D. Effect of Limestone Powder on Strength and Microstructure of Geopolymer. J. Chin. Ceram. Soc. 2017, 45, 260–267. [Google Scholar]
- Xu, Y.; Tan, L.; Cao, S.; Qu, W. Multiparameter and multiobjective optimization design of centrifugal pump based on orthogonal method. Proc. Inst. Mech. Eng. 2017, 231, 2569–2579. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Z.; Fan, Y.; Wang, N.; Wang, W.; Liu, J. Orthogonal Experiment Analysis on the Multiple Factors Influence of the lnterfacial Bondinc Performance of the Composite Concrete. Mater. Rep. 2022, 36, 87–92. [Google Scholar]
- Hansen, B.S.; Shannon, J.; Howard, I.L. Improved Understanding of Concrete Compressive Strength Utilizing Cement Paste Testing. Adv. Civ. Eng. Mater. 2019, 8, 20180134. [Google Scholar] [CrossRef]
- Method of Testing Cements. Determination of Strength. Available online: www.std.samr.gov.cn (accessed on 1 July 2023).
- Modarresi, F.; Bingham, P.A.; Jubb, G.A. Thermal conductivity of refractory glass fibres. J. Therm. Anal. Calorim. 2016, 125, 35–44. [Google Scholar] [CrossRef]
- Thermal Insulation. Determination of Steady-State Thermal Resistance and Related Properties. Guarded Hot Plate Apparatus. Available online: www.openstd.samr.gov.cn (accessed on 1 July 2023).
- General Rules for Measurement of Length in Micron Scale by SEM. Available online: www.openstd.samr.gov.cn (accessed on 1 July 2023).
- Nole, M.; Daigle, H.; Milliken, K.L.; Prodanović, M. A method for estimating microporosity of fine-grained sediments and sedimentary rocks via scanning electron microscope image analysis. Sedimentol. J. Int. Assoc. Sedimentol. 2016, 63, 1507–1521. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Li, K.; Deng, S.; Dong, L. A Cleaner Mining Method for Waste Tailings as Paste Materials to Goafs. Geofluids 2020, 2020, 8857290. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cheng, X. Preparation of Porous Thermal Insulation Material Using Fly Ash. J. Mater. Sci. Eng. 2014, 32, 5. [Google Scholar]
- Emsettin, K.; Metin, D.; Mehmet, A. The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete. Arab. J. Geosci. 2018, 11, 289. [Google Scholar]
- Liu, S.; Yu, J.; Han, L.; Ma, B. Effects of xonotlite additive and forming pressure on the properties of the SiO2-based nanoporous thermal insulation materials. J. Ceram. Process. Res. 2018, 19, 206–210. [Google Scholar]
- Zhong, K.; Xiao, Y. Orthogonal experiment design and range analysis of TPCT extracting thermal energy from coal fire. China Saf. Sci. J. 2021, 31, 7. [Google Scholar]
- Jiang, Y.; Xin, S.; Li, H. Performance of Heat-Insulating Materials Doped with Basalt Fibres for Use in Mines. Polymers 2020, 12, 2057. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, L.; Gong, M. Characterization and engineering application of a novel ceramic composite insulation material. Compos. Part B Eng. 2017, 111, 143–147. [Google Scholar] [CrossRef]
- Yuan, Q.; Jiang, W.; An, L. Mechanical and thermal properties of high-density polyethylene toughened with glass beads. J. Appl. Polym. Sci. 2010, 89, 2102–2107. [Google Scholar] [CrossRef]
- Wang, X. The Recent Progress China Has Made in the Backfill Mining Method, Part I: The Theory and Equipment of Backfill Pipeline Transportation. Minerals 2021, 11, 1274. [Google Scholar]
- Chen, J.; Chen, J.; Yuan, X. Evaluation and Countermeasures of Green Mine Construction in Yongcheng City Based on DPSIR Model. Preprints 2017, 2017060043. [Google Scholar] [CrossRef]
Chemical Composition | SiO2 | Al2O3 | Cao | MgO | Fe | Sn | Sb | Zn | In | Pb | S | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Content (%) | 41.59 | 2.3 | 18.94 | 0.83 | 5.34 | 0.27 | 0.26 | 1.24 | 0.0011 | 0.27 | 5.79 | 23.17 |
Particle Size | −10 | −20 | −50 | −100 | −200 | −500 | −1000 |
---|---|---|---|---|---|---|---|
Separate cumulative (%) | 7.73 | 9.01 | 7.49 | 8.12 | 17.01 | 10.87 | 2.79 |
Total cumulative (%) | 20.62 | 29.63 | 46.08 | 64.81 | 81.82 | 97.21 | 100 |
Chemical Composition | SiO2 | Al2O3 | CaO | MgO | K2O | Fe2O3 | Other |
---|---|---|---|---|---|---|---|
Content (%) | 41.59 | 14.5 | 2.2 | 0.5 | 5.5 | 3.34 | 32.37 |
Level | A Tailings (%) | B Glass Beads (%) | C PC (%) |
---|---|---|---|
1 | 50 | 10 | 5 |
2 | 60 | 15 | 10 |
3 | 70 | 20 | 15 |
Number | Experimental Group | A Tailings (%) | B Glass Beads (%) | C PC (%) |
---|---|---|---|---|
1 | A1B1C1 | 50 | 10 | 5 |
2 | A1B2C2 | 50 | 15 | 10 |
3 | A1B3C3 | 50 | 20 | 15 |
4 | A2B1C3 | 60 | 10 | 15 |
5 | A2B2C1 | 60 | 15 | 5 |
6 | A2B3C2 | 60 | 20 | 10 |
7 | A3B1C2 | 70 | 10 | 10 |
8 | A3B2C3 | 70 | 15 | 15 |
9 | A3B3C1 | 70 | 20 | 5 |
Number | Experimental Group | A Tailings (%) | B Class Beads (%) | C PC (%) | Compressive Strength (MPa) | Thermal Conductivity (w/k·m) |
---|---|---|---|---|---|---|
1 | A1B1C1 | 50 | 10 | 5 | 0.54 | 0.378 |
2 | A1B2C2 | 50 | 15 | 10 | 0.53 | 0.292 |
3 | A1B3C3 | 50 | 20 | 15 | 0.43 | 0.274 |
4 | A2B1C3 | 60 | 10 | 15 | 0.81 | 0.273 |
5 | A2B2C1 | 60 | 15 | 5 | 0.41 | 0.268 |
6 | A2B3C2 | 60 | 20 | 10 | 0.47 | 0.376 |
7 | A3B1C2 | 70 | 10 | 10 | 0.39 | 0.262 |
8 | A3B2C3 | 70 | 15 | 15 | 0.52 | 0.386 |
9 | A3B3C1 | 70 | 20 | 5 | 0.49 | 0.374 |
Calculated Item | A | B | C |
---|---|---|---|
1.50 | 1.74 | 1.44 | |
1.69 | 1.46 | 1.39 | |
1.40 | 1.39 | 1.76 | |
0.50 | 0.58 | 0.48 | |
0.56 | 0.49 | 0.47 | |
0.47 | 0.46 | 0.59 | |
R | 0.09 | 0.12 | 0.13 |
High level | A2 | B1 | C2 |
Priority order | C > B > A |
Calculated Item | A | B | C |
---|---|---|---|
0.944 | 0.913 | 1.020 | |
0.917 | 0.946 | 0.930 | |
1.022 | 1.024 | 0.933 | |
0.315 | 0.304 | 0.340 | |
0.306 | 0.315 | 0.310 | |
0.341 | 0.341 | 0.311 | |
R | 0.035 | 0.037 | 0.029 |
High level | A2 | B1 | C3 |
Priority order | B > A > C |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 0.2468 | 7 | 0.0353 | 275.47 | <0.0001 | Significant |
A-A | 0.0255 | 1 | 0.0255 | 199.59 | <0.0001 | |
B-B | 0.0362 | 1 | 0.0362 | 282.60 | <0.0001 | |
C-C | 0.0774 | 1 | 0.0774 | 604.61 | <0.0001 | |
AB | 0.0474 | 1 | 0.0474 | 370.44 | <0.0001 | |
BC | 0.0248 | 1 | 0.0248 | 193.71 | <0.0001 | |
A2 | 0.0031 | 1 | 0.0031 | 24.08 | 0.0008 | |
B2 | 0.0044 | 1 | 0.0044 | 34.70 | 0.0002 | |
Residual | 0.0019 | 9 | 0.0004 | |||
Lack of fit | 0.0012 | 1 | 0.0012 | 2.17 | 0.2214 | Not significant |
Pure error | 0.0007 | 8 | 0.0008 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 0.0466 | 7 | 0.0067 | 281.28 | <0.0001 | Significant |
A-A | 0.0130 | 1 | 0.0130 | 547.77 | <0.0001 | |
B-B | 0.0034 | 1 | 0.0034 | 143.44 | <0.0001 | |
C-C | 0.0098 | 1 | 0.0098 | 412.11 | <0.0001 | |
AB | 0.0376 | 1 | 0.0376 | 1588.91 | <0.0001 | |
BC | 0.0119 | 1 | 0.0119 | 502.71 | <0.0001 | |
A2 | 0.0004 | 1 | 0.0004 | 16.52 | 0.0028 | |
B2 | 0.0048 | 1 | 0.0048 | 203.79 | <0.0001 | |
Residual | 0.0015 | 9 | 0.0011 | |||
Lack of fit | 0.0005 | 1 | 0.0016 | 9.23 | 0.1832 | Not significant |
Pure error | 0.0010 | 8 | 0.0005 |
Compressive Strength (C) | Thermal Conductivity (T) | ||
---|---|---|---|
Statistical item | Value | Statistical item | Value |
R2 | 0.9954 | R2 | 0.9954 |
Adjusted R2 | 0.9917 | Adjusted R2 | 0.9919 |
Predicted R2 | 0.9303 | Predicted R2 | 0.9446 |
Adeq precision | 52.8788 | Adeq precision | 39.2708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Ran, C.; Liu, Y. Properties of Cement Thermal Insulation Materials Containing Tailing Waste for Connecting Mines Assessed Using the Orthogonal Method with the Response Surface Method. Processes 2023, 11, 2652. https://doi.org/10.3390/pr11092652
Deng H, Ran C, Liu Y. Properties of Cement Thermal Insulation Materials Containing Tailing Waste for Connecting Mines Assessed Using the Orthogonal Method with the Response Surface Method. Processes. 2023; 11(9):2652. https://doi.org/10.3390/pr11092652
Chicago/Turabian StyleDeng, Hongwei, Chunzhen Ran, and Yao Liu. 2023. "Properties of Cement Thermal Insulation Materials Containing Tailing Waste for Connecting Mines Assessed Using the Orthogonal Method with the Response Surface Method" Processes 11, no. 9: 2652. https://doi.org/10.3390/pr11092652
APA StyleDeng, H., Ran, C., & Liu, Y. (2023). Properties of Cement Thermal Insulation Materials Containing Tailing Waste for Connecting Mines Assessed Using the Orthogonal Method with the Response Surface Method. Processes, 11(9), 2652. https://doi.org/10.3390/pr11092652