Fractal Characterization of Particle Size and Coordinate Distribution of Dispersed Phase in the Steelmaking Process of Combined Blowing Conversion
Abstract
:1. Introduction
2. Experimental Equipment and Analysis Methods
2.1. Experimental Equipment
2.2. Experimental Method of Image Processing
2.3. Methods for Studying Particle Size Distribution in Dispersed Phase
2.4. Methodology for Analyzing Dispersed Phase Coordinate Distributions
3. Results and Discussion
3.1. Particle Size Distribution of the Dispersed Phase of Metal Droplets
3.2. Particle Size Distribution of the Dispersed Phase of Slag Droplets
3.3. Dimensionless Coordinate Distribution of the Dispersed Phase of Metal and Slag Droplets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Definition |
Frm Fr′m | Froude number for the model and the prototype. |
ρa | The density of air at 20 °C (kg/m3). |
ρO2 | The density of oxygen under normal conditions (kg/m3). |
ρw | The density of water (kg/m3). |
ρm | The density of liquid steel (kg/m3). |
ρs | The density of slag (kg/m3). |
ρN2 | The density of nitrogen gas under normal conditions(kg/m3). |
dM dI | Diameters for the model and the prototype (mm). |
VM VI | The nominal velocities of the gas at the lance outlet of the model and the prototype (m/s). |
e | Number of the nozzles. |
Qa QO2 | The gas supply rate of the model and the prototype (Nm3/h). |
n1, n2 | The number of bottom blowing gas nozzles of the model and the prototype (Nm3/h). |
Qa QN2 | The nominal nozzle velocities of the model and the prototype (m/s). |
dm´, dI´ | The diameters of the nozzles in the bottom lance for the model and the prototype (mm). |
dT | The droplet critical diameter (mm). |
L | The range percent of dimensionless transverse coordinates of the dispersed phase. |
F | The range of the coordinate distribution of the dispersed phase. |
g | Gravitational acceleration (m/s2). |
h, H, Hf | The depth of molten bath, lance position of model, and actual converter (mm). |
|Kmx|, |Kmy|, |Ksx|, |Ksy| | The dimensionless ratio of the horizontal and vertical coordinates for the metal and slag droplets. |
|Mm|, |Ms| | The size distribution of the metal and slag dispersed phases. |
n, N | The number of clusters with a size equal to s, the number of clusters with a size greater than or equal to s. |
DLr | The percentage of dispersed phases in a given range to the total dispersed phases. |
P | The percentage of the dimensionless coordinates of dispersed phase greater than or equal to a certain range. |
QT, QO2, QB, QN2 | The flow rate of top and bottom blow (Nm3/h). |
r, R, δ | The impact pit radius is represented by r; the model radius is represented by R, and δ is the slag layer thickness (mm). |
s | The size of dispersed phase (pixel). |
S/M | The slag/metal ratio. |
ui, ui,crit | The interfacial flow velocity, the critical flow velocity (m/s). |
x′m, y′m, x′s, y′s | The dimensionless horizontal and vertical coordinates of the metal and slag droplet. |
α | The angle between escape velocity and the vertical direction. |
σ | Interfacial tension (kg/s2). |
References
- Chen, R.; Huang, Y.; Li, L.L.; Luo, Z.G. Water Modeling Study on Dispersed Phase Size Distribution and Interface Areas in Metallurgical Multiphase Reactor. Adv. Mater. Res. 2014, 1052, 567–573. [Google Scholar] [CrossRef]
- Chen, R.; Zou, Z.S. Textural fractal dimension of slag-metal boundary in top-blowing converter with water modeling. Chin. J. Process Eng. 2005, 5, 103–106. [Google Scholar]
- Chen, R.; Li, M.; Zou, Z.S. Fractal study on slag-metal distribution in top-blown converter using water model. J. Iron Steel Res. 2005, 17, 22–25. [Google Scholar]
- Kaye, B.H. A Random Walk through Fractal Dimensions; Northeastern University Press: Shenyang, China, 1994; pp. 116–120. [Google Scholar]
- Shen, B.M.; Shang, Z.W. Fractal Dimension; Seismological Press: Beijing, China, 1989; pp. 52–65. [Google Scholar]
- Dong, L.K. Fractal Theory and Its Applications; Liaoning Science and Technology Press: Shenyang, China, 1991; pp. 70–82. [Google Scholar]
- Lin, H.Y.; Li, Y.X. Fractal Theory; Beijing Institute of Technology Press: Beijing, China, 1992; pp. 30–34. [Google Scholar]
- Nakanishi, K.; Kato, Y.; Nozaki, T.; Emi, T. Cold model study on the mixing rate of slag and metalBath in Q-BOP. Tetsu Hagane 1980, 66, 1307–1308. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.R. Steelmaking; Metallurgical Industry Press: Beijing, China, 1994; pp. 33–41. [Google Scholar]
- Gao, R.H.; Liu, S.H.; Zhao, Y. High-precision laser spot center positioning method for weak light conditions. Appl. Opt. 2020, 59, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xu, Z.J.; Fu, D.L.; Hu, C. Laser spot center detection and comparison test. Photonic Sens. 2019, 9, 49–52. [Google Scholar] [CrossRef]
- Huang, K.; Dai, J.; Chen, X.; Deng, W.T.; Huang, Z.J. Laser spot center detection for laser synthesizer. Laser Infrared 2017, 47, 1499–1504. [Google Scholar]
- He, W.; Ren, M.J.; Xiao, Y. Calculation method of fly ash permeability based on image recognition. J. Hunan Univ. 2020, 47, 144–148. [Google Scholar]
- Chen, J.Y.; Zhao, H.; Zhao, M.H. Image Processing and Multi-fractal Characteristics of Fly Ash Particles. J. Hunan Univ. 2021, 48, 205–214. [Google Scholar]
- Nie, Z.H.; Liao, J.Y.; Zhou, S.H.; Li, B.X.; An, A.J. Image Processing and Shape Quantitative Analysis of Volcanic Cinder Particles. J. Hunan Univ. 2020, 47, 131–139. [Google Scholar]
- Yang, S.Y.; Zhao, R.D.; Jin, H.S.; Li, F.H. Analsis on Mechanical Properties and Fractal Characteristics of Micropore Structure of Geopolymer Mortar. J. South China Univ. Technol. 2020, 48, 126–135. [Google Scholar]
- Liu, P.; Huang, Y.P. Semi-Supervized Crack-Detection Method Based on Image-Semantic Segmentation. Laser Optoelectron. Progress 2021, 58, 317–328. [Google Scholar]
- Zhao, L.D.; Sheng, Z.H. Applications of Fractal Models in Simulating Natural Scene. J. Southeast Univ. 1996, 26, 145–148. [Google Scholar]
- Huang, Z.L. Fractal nature of turbulence. Adv. Mech. 2000, 4, 581–596. [Google Scholar]
- Falconer, K.J. Fractal Geometry-Mathematical Foundations and Applications; Northeastern University Press: Shenyang, China, 1991; pp. 57–75. [Google Scholar]
- Li, J.; Zhu, J.Z.; Zhu, Q.K. Review on methods of calculating fractal dimension. J. Beijing For. Univ. 2002, 24, 71–78. [Google Scholar]
- Liu, S.J.; Li, T.R.; Liu, J.; Xie, P. Research on multi-fractals of weighted hypernetworks. J. Univ. Sci. Technol. China 2020, 50, 85–97. [Google Scholar]
- Liu, S.J.; Li, T.R.; Liu, X.W. Network dimension: A new measure for complex networks. Comput. Sci. 2019, 46, 51–56. [Google Scholar]
- Balka, R.; Buczolich, Z.; Elekes, M. A new fractal dimension: The topological Hausdorff dimension. Adv. Math. 2015, 274, 881–927. [Google Scholar] [CrossRef]
- Oeters, F. Metallurgy of Steelmaking; Metallurgical Industry Press: Beijing, China, 1997; pp. 317–319. [Google Scholar]
Parameter | Converter | Water Model | |
---|---|---|---|
Height | (mm) | 4800 | 800 |
Diameter (width) | (mm) | 3000 | 500 |
Thickness | (mm) | - | 50 |
Bath depth | (mm) | 708 | 118 |
Blowing mode | Combine-blowing | Combine-blowing | |
Blowing gas | (Nm3/h) | Tonnage oxygen | Air |
Bottom gas | (Nm3/h) | Nitrogen | Air |
The Density of molten | (kg/m3) | 7000 | 1000 |
The Density of slag | (kg/m3) | 3200 | 808 |
Diameter of the throat | (mm) | 38 | 6.3 |
Angle of the throat | 12 | 12 | |
Number of the throat | 4 | 4 | |
Throat circle diameter | (mm) | 140 | 23.3 |
s (pixel) | n | N | s (pixel) | n | N |
---|---|---|---|---|---|
1 | 85 | 196 | 11 | 1 | 10 |
2 | 27 | 111 | 12 | 1 | 9 |
3 | 34 | 84 | 13 | 2 | 8 |
4 | 13 | 50 | 14 | 1 | 6 |
5 | 7 | 37 | 16 | 1 | 5 |
6 | 6 | 30 | 17 | 1 | 4 |
7 | 4 | 24 | 25 | 1 | 3 |
8 | 4 | 20 | 27 | 1 | 2 |
9 | 3 | 16 | 35 | 1 | 1 |
10 | 3 | 13 |
F | n | DLr | P |
---|---|---|---|
0 < xm′ ≤ 0.1 | 18 | 0.02894 | 1 |
0.1 < xm′ ≤ 0.2 | 98 | 0.15755 | 0.9711 |
0.2 < xm′ ≤ 0.3 | 118 | 0.18971 | 0.8135 |
0.3 < xm′ ≤ 0.4 | 104 | 0.16720 | 0.6238 |
0.4 < xm′ ≤ 0.5 | 72 | 0.11576 | 0.4566 |
0.5 < xm′ ≤ 0.6 | 78 | 0.12540 | 0.3408 |
0.6 < xm′ ≤ 0.7 | 105 | 0.16881 | 0.2154 |
0.7 < xm′ ≤ 0.8 | 15 | 0.02412 | 0.0466 |
0.8 < xm′ ≤ 0.9 | 3 | 0.00482 | 0.0225 |
0.9 < xm′ ≤ 1.0 | 11 | 0.01768 | 0.0177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhou, X.; Zheng, Z.; Chen, R.; Yu, S.; Shi, C. Fractal Characterization of Particle Size and Coordinate Distribution of Dispersed Phase in the Steelmaking Process of Combined Blowing Conversion. Processes 2023, 11, 2680. https://doi.org/10.3390/pr11092680
Chen S, Zhou X, Zheng Z, Chen R, Yu S, Shi C. Fractal Characterization of Particle Size and Coordinate Distribution of Dispersed Phase in the Steelmaking Process of Combined Blowing Conversion. Processes. 2023; 11(9):2680. https://doi.org/10.3390/pr11092680
Chicago/Turabian StyleChen, Shiyi, Xiaolei Zhou, Zhihao Zheng, Ren Chen, Shan Yu, and Chunyang Shi. 2023. "Fractal Characterization of Particle Size and Coordinate Distribution of Dispersed Phase in the Steelmaking Process of Combined Blowing Conversion" Processes 11, no. 9: 2680. https://doi.org/10.3390/pr11092680
APA StyleChen, S., Zhou, X., Zheng, Z., Chen, R., Yu, S., & Shi, C. (2023). Fractal Characterization of Particle Size and Coordinate Distribution of Dispersed Phase in the Steelmaking Process of Combined Blowing Conversion. Processes, 11(9), 2680. https://doi.org/10.3390/pr11092680