Effect of Chloride and Ferrous Ions on Improving Copper Leaching from Black Copper Ores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Black Copper Ore Characterization
2.2. Iso-pH Leaching Test Methods
2.3. Curing Tests Methods
2.4. Leaching Column Tests
3. Results and Discussion
3.1. Iso-pH Leaching Test
3.2. Curing Tests
3.3. Leaching Column Tests
3.4. Analysis of the Residue of the Column Leaching Tests
4. Conclusions
- The best combination of parameters for the sulfation test was a rest time of 72 h, 60% of the analytical consumption of H2SO4, 30 kg/t of NaCl, and 1:3 MnO2:FeSO4. Reducing agents were essential to dissociate the MnO2 present in the black copper ore. It was verified when the best Mn extraction was obtained using the MnO2:FeSO4 ratio of 1:3. Therefore, adding FeSO4 in the pretreatment stage made it possible to dissolve a more significant amount of Mn.
- The maximum copper recovery in the column test was obtained for the sample pretreated with NaCl + H2SO4 + FeSO4, reaching 57.8% recovery. It allows us to infer that adding both reagents is necessary to increase copper recovery. Furthermore, the analysis of residues and effluents indicates that the copper wad is the main mineralogical species that benefits from adding reducing agents.
- Black oxides have lower recovery and slower kinetics than traditional copper oxide ores. Thus, the time required to maximize recovery should be greater than 65 days of irrigation. Furthermore, according to the kinetic study, the curves of all the columns did not achieve maximum copper dissolution at the end of the leaching cycle.
- Finally, the present study of the leaching of the exotic mineral has allowed for satisfactory results for correct decision-making at an industrial level at CODELCO Salvador.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, S.; Astudillo, J.; Rojo, J.; Tristá, D.; Hayashi, K. Ore Mineralogy, Fluid Inclusion, and Stable Isotopic Characteristics of Stratiform Copper Deposits in the Coastal Cordillera of Northern Chile. Miner. Depos. 2003, 38, 208–216. [Google Scholar] [CrossRef]
- Nelson, M.; Kyser, K.; Clark, A.; Oates, C. Carbon Isotope Evidence for Microbial Involvement in Exotic Copper Silicate Mineralization, Huinquintipa and Mina Sur, Northern Chile. Econ. Geol. 2007, 102, 1311–1320. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.; Pesquera, A.; Gil-Crespo, P.P.; Delgado, A. Exotic Cu-Mineralization in Triassic Red Beds from Navas de San Juan (Jaén, Spain). Ore. Geol. Rev. 2020, 119, 103399. [Google Scholar] [CrossRef]
- Fernández-Mort, A.; Riquelme, R.; Campos, E.; Tapia, M.; Sola, S.; María, A.; Zarza, A. Sedimentary Controls on the Formation of Gravel-Hosted Exotic-Cu Deposits. Examples from Tesoro Basin, Northern Chile. In Proceedings of the XIV Congreso Geológico Chileno, La Serena, Chille, 4–8 October 2015; pp. 584–587. [Google Scholar]
- Dold, B. Geochemical Modeling of the Exotic Mineralization of the Exótica Deposit at Chuquicamata, Chile. In Proceedings of the XI Congreso Geológico Chilen, Antofagasta, Chile, 7–11 August 2006; pp. 247–250. [Google Scholar]
- Riquelme, R.; Tapia, M.; Campos, E.; Mpodozis, C.; Carretier, S.; González, R.; Muñoz, S.; Fernández-Mort, A.; Sanchez, C.; Marquardt, C. Supergene and Exotic Cu Mineralization Occur during Periods of Landscape Stability in the Centinela Mining District, Atacama Desert. Basin Res. 2018, 30, 395–425. [Google Scholar] [CrossRef]
- Helle, S.; Pincheira, M.; Jerez, O.; Kelm, U. Sequential Extraction to Predict the Leaching Potential of Refractory Black Copper Ores. In Proceedings of the XV Balkan Mineral Processing Congress, Sozopol, Bulgaria, 12–16 June 2013; pp. 12–16. [Google Scholar]
- Kidder, J.A.; Voinot, A.; Leybourne, M.I.; Layton-Matthews, D.; Bowell, R.J. Using Stable Isotopes of Cu, Mo, S, and 87Sr/86Sr in Hydrogeochemical Mineral Exploration as Tracers of Porphyry and Exotic Copper Deposits. Appl. Geochem. 2021, 128, 104935. [Google Scholar] [CrossRef]
- Zambra, J.; Kojima, S.; Espinoza, S.; Definis, A. Angélica Copper Deposit: Exotic Type Mineralization in the Tocopilla Plutonic Complex of the Coastal Cordillera, Northern Chile. Resour. Geol. 2007, 57, 427–434. [Google Scholar] [CrossRef]
- Pinget, M.-C.; Dold, B.; Fontboté, L.; Vergara, M.; Rojas De La Rivera, J. Mineralogía de La Mineralización Exótica En Chuquicamata: Nuevos Avances. In Proceedings of the 13th Congreso Geológico Chileno, Antofagasta, Chile, 5–9 August 2012; pp. 37–39. [Google Scholar]
- Menzies, A.; Campos, E.; Hernández, V.; Sola, S.; Riquelme, R.; Barraza, M. Understanding Exotic-Cu Mineralisation: Part II—Characterisation of Black Copper (Cobre Negro) Ore. In Proceedings of the 13th SGA Biennial Meeting, Nancy, France, 24–27 April 2015. [Google Scholar]
- Mote, T.I.; Becker, T.A.; Renne, P.; Brimhall, G.H. Chronology of Exotic Mineralization at El Salvador, Chile, by Ar-40/Ar-39 Dating of Copper Wad and Supergene Alunite. Econ. Geol. 2001, 96, 351–366. [Google Scholar] [CrossRef]
- Pinget, M.-C.; Dold, B.; Fontboté, L. Exotic Mineralization at Chuquicamata, Chile: Focus on the Copper Wad Enigma. In Proceedings of the 10th Swiss Geoscience Meeting, Bern, Switzerland, 16–17 November 2012. [Google Scholar]
- Pincheira, M.; Dagnino, A.; Kelm, U.; Helle, S. “Copper Pitch y Copper Wad”: Contraste Entre Las Fases Presentes En Las Cabezas y En Los Ripios En Pruebas de Lixiviación de Materiales de Mina Sur, Chuquicamata. In Proceedings of the Abstr, X Congreso Geológico Chileno, Concepción, Chile, 6–10 October 2003. [Google Scholar]
- Helle, S.; Kelm, U.; Barrientos, A.; Rivas, P.; Reghezza, A. Improvement of Mineralogical and Chemical Characterization to Predict the Acid Leaching of Geometallurgical Units from Mina Sur, Chuquicamata, Chile. Miner. Eng. 2005, 18, 1334–1336. [Google Scholar] [CrossRef]
- Toro, N.; Pérez, K.; Saldaña, M.; Jeldres, R.I.; Jeldres, M.; Cánovas, M. Dissolution of Pure Chalcopyrite with Manganese Nodules and Waste Water. J. Mater. Res. Technol. 2020, 9, 798–805. [Google Scholar] [CrossRef]
- Velásquez-Yévenes, L.; Lasnibat, R. Simultaneous Recovery of Copper and Manganese from Exotic Copper Ore in Acid Chloride Media Using Cane Molasses as the Reducing Agent. Hydrometallurgy 2021, 199, 105531. [Google Scholar] [CrossRef]
- Benavente, O.; Hernández, M.C.; Melo, E.; Núñez, D.; Quezada, V.; Zepeda, Y. Copper Dissolution from Black Copper Ore under Oxidizing and Reducing Conditions. Metals 2019, 9, 799. [Google Scholar] [CrossRef]
- Benavente, O.; Hernández, M.C.; Melo, E.; Ardiles, L.; Quezada, V.; Zepeda, Y. Copper Extraction from Black Copper Ores through Modification of the Solution Potential in the Irrigation Solution. Metals 2019, 9, 1339. [Google Scholar] [CrossRef]
- Pérez, K.; Toro, N.; Campos, E.; González, J.; Jeldres, R.I.; Nazer, A.; Rodriguez, M.H. Extraction of Mn from Black Copper Using Iron Oxides from Tailings and Fe2+ as Reducing Agents in Acid Medium. Metals 2019, 9, 1112. [Google Scholar] [CrossRef]
- Quezada, V.; Benavente, O.; Beltrán, C.; Díaz, D.; Melo, E.; García, A. Dissolution of Black Copper Oxides from a Leaching Residue. Metals 2020, 10, 1012. [Google Scholar] [CrossRef]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Keith, B.; Melo, E. Effect of Pretreatment Prior to Leaching on a Chalcopyrite Mineral in Acid Media Using NaCl and KNO3. J. Mater. Res. Technol. 2020, 9, 10316–10324. [Google Scholar] [CrossRef]
- Zhong, S.; Li, Y. An Improved Understanding of Chalcopyrite Leaching Kinetics and Mechanisms in the Presence of NaCl. J. Mater. Res. Technol. 2019, 8, 3487–3494. [Google Scholar] [CrossRef]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Melo, E. The Effects of Sulphuric Acid and Sodium Chloride Agglomeration and Curing on Chalcopyrite Leaching. Metals 2021, 11, 873. [Google Scholar] [CrossRef]
- Yoo, K.; Kim, S.; Lee, J.; Ito, M.; Tsunekawa, M.; Hiroyoshi, N. Effect of Chloride Ions on Leaching Rate of Chalcopyrite. Miner. Eng. 2010, 23, 471–477. [Google Scholar] [CrossRef]
- Wang, L.; Yin, S.; Deng, B.; Wu, A. Copper Sulfides Leaching Assisted by Acidic Seawater-Based Media: Ionic Strength and Mechanism. Miner. Eng. 2022, 175, 107286. [Google Scholar] [CrossRef]
- Castellón, C.I.; Taboada, M.E. Leaching of Copper Concentrate with Iodized Salts in a Saline Acid Medium: Part 1—Effect of Concentrations. Materials 2023, 16, 2312. [Google Scholar] [CrossRef]
- Bakhshoude, M.; Darezereshki, E.; Bakhtiari, F. Thermoacidophilic Bioleaching of Copper Sulfide Concentrate in the Presence of Chloride Ions. J. Cent. South Univ. 2023, 30, 749–762. [Google Scholar] [CrossRef]
- Navarro, P.; Vargas, C.; Bahamonde, F.; Gómez, M.; Espinoza, D.; Sepúlveda, R.; Castillo, J. Effect of Pre-Treatment with Sodium Chloride/Sulfuric Acid on the Bornite Concentrate Leaching in Chloride Medium. Metals 2020, 10, 1674. [Google Scholar] [CrossRef]
- Hernández, P.; Gahona, G.; Martínez, M.; Toro, N.; Castillo, J. Caliche and Seawater, Sources of Nitrate and Chloride Ions to Chalcopyrite Leaching in Acid Media. Metals 2020, 10, 551. [Google Scholar] [CrossRef]
- Cerda, C.; Taboada, M.; Jamett, N.; Ghorbani, Y.; Hernández, P. Effect of Pretreatment on Leaching Primary Copper Sulfide in Acid-Chloride Media. Minerals 2017, 8, 1. [Google Scholar] [CrossRef]
- Hernández, P.; Taboada, M.; Herreros, O.; Graber, T.; Ghorbani, Y. Leaching of Chalcopyrite in Acidified Nitrate Using Seawater-Based Media. Minerals 2018, 8, 238. [Google Scholar] [CrossRef]
- Torres, D.; Pérez, K.; Trigueros, E.; Jeldres, I.R.; Salinas-Rodríguez, E.; Robles, P.; Toro, N. Reducing-Effect of Chloride for the Dissolution of Black Copper. Metals 2020, 10, 123. [Google Scholar] [CrossRef]
- Hernández, P.C.; Dupont, J.; Herreros, O.O.; Jimenez, Y.P.; Torres, C.M. Accelerating Copper Leaching from Sulfide Ores in Acid-Nitrate-Chloride Media Using Agglomeration and Curing as Pretreatment. Minerals 2019, 9, 250. [Google Scholar] [CrossRef]
- Velásquez-Yévenes, L.; Torres, D.; Toro, N. Leaching of Chalcopyrite Ore Agglomerated with High Chloride Concentration and High Curing Periods. Hydrometallurgy 2018, 181, 215–220. [Google Scholar] [CrossRef]
- Tian, Z.; Li, H.; Wei, Q.; Qin, W.; Yang, C. Effects of Redox Potential on Chalcopyrite Leaching: An Overview. Miner. Eng. 2021, 172, 107135. [Google Scholar] [CrossRef]
- Moraga, C.; Cerecedo-Saenz, E.; González, J.; Robles, P.; Carrillo-Pedroza, F.R.; Toro, N. Comparative Study of MnO2 Dissolution from Black Copper Minerals and Manganese Nodules in an Acid Medium. Metals 2021, 11, 817. [Google Scholar] [CrossRef]
- Senanayake, G. Acid Leaching of Metals from Deep-Sea Manganese Nodules—A Critical Review of Fundamentals and Applications. Miner. Eng. 2011, 24, 1379–1396. [Google Scholar] [CrossRef]
- Lundström, M.; Aromaa, J.; Forsén, O.; Hyvärinen, O.; Barker, M.H. Cathodic Reactions of Cu2+ in Cupric Chloride Solution. Hydrometallurgy 2007, 85, 9–16. [Google Scholar] [CrossRef]
Total Copper (%) | Soluble Copper (%) | Fe (%) | Mn (%) | Mg (%) | Ca (%) | Al (%) |
---|---|---|---|---|---|---|
0.71 | 0.33 | 5.37 | 0.46 | 0.10 | 0.62 | 0.21 |
Mineral | Chemical Formula | Mass (%) |
---|---|---|
Chrysocolla | (Cu,Al)2H2Si2O5(OH)4·n(H2O) | 0.29 |
Cu-bearing Phyllosilicates | (Cu,X,Y)a(Si2O5)b(OH)c | 5.45 |
Cu-bearing Fe Oxide/Hydroxides | CuxFe3+O(OH) | 0.52 |
Cu-bearing Wad | (Cu,Al,Mn,Fe)xOy | 2.08 |
Other Cu Minerals | CuxOy(OH)z | 0.02 |
Pyrite | FeS2 | 0.01 |
Fe Oxides/Hydroxides | FexOy(OH)z | 1.75 |
Sulfates | CaSO4·2H2O/CaSO4 | 0.07 |
Carbonates | CaCO3/MgCO3 | 5.44 |
Quartz | SiO2 | 22.36 |
K-Feldspars (Orthoclase, Anorthoclase) | KAlSi3O8 | 15.81 |
Ca, Na-Feldspars (Plagioclase Series) | (Ca,Na)Al2Si2O8 | 21.71 |
Kaolinite Group | Al2Si2O5(OH)4 | 1.26 |
Muscovite/Sericite/Illite/Phengite | KAl2(Si3Al)O10(OH,F)2/(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] | 3.65 |
Smectite Group (Montmorillonite, Nontronite) | (Na,Ca,Fe)x(Al,Mg)2Si4O10(OH)2·n(H2O) | 2.21 |
Biotite/Phlogopite | K(Mg,Fe2+)3[AlSi3O10(OH,F)2 | 0.74 |
Chlorite Group | (Fe2+,Mg,Fe3+)5Al(Si3Al)O10(OH,O)8 | 1.51 |
Hornblende | Ca2Mg4Al0.75Fe3+0.25(Si7AlO22)(OH)2 | 9.46 |
Epidote | Ca2(Fe,Al)Al2(SiO4)(Si2O7)O(OH) | 2.70 |
Others | ----- | 2.97 |
Variable | Value | Unit |
---|---|---|
Curing time | 24, 48, 72, 96, 120 | h |
Acid dosage | 40, 50, 60 | % of analytical acid consumption |
NaCl | 10, 20, 30 | kg/t |
MnO2:Fe2+ (as FeSO4) | 1:1, 1:2, 1:3 | - |
Column | Pretreatment |
---|---|
Column 1 (duplicate) | H2SO4 |
Column 2 (duplicate) | H2SO4, and NaCl |
Column 3 (duplicate) | H2SO4, and FeSO4 |
Column 4 (duplicate) | H2SO4, NaCl and FeSO4 |
Time (h) | MnO2:FeSO4 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1:1 | 1:2 | 1:3 | |||||||
10 kg/t NaCl | 20 kg/t NaCl | 30 kg/t NaCl | 10 kg/t NaCl | 20 kg/t NaCl | 30 kg/t NaCl | 10 kg/t NaCl | 20 kg/t NaCl | 30 kg/t NaCl | |
24 | 14.7% | 17.7% | 11.3% | 15.6% | 14.9% | 24.2% | 10.8% | 15.9% | 23.1% |
48 | 23.3% | 20.4% | 19.4% | 21.8% | 28.9% | 23.6% | 23.3% | 22.5% | 22.6% |
72 | 28.6% | 24.1% | 21.1% | 25.1% | 26.3% | 29.6% | 25.1% | 26.7% | 23.0% |
96 | 19.5% | 18.2% | 25.4% | 19.0% | 19.3% | 26.8% | 23.6% | 22.6% | 27.0% |
120 | 21.7% | 17.5% | 18.0% | 21.9% | 26.0% | 20.3% | 18.7% | 21.1% | 35.6% |
Column | Cu2+ (g/L) | Fe2+ (g/L) | Fe3+ (g/L) | Mn2+ (g/L) | SO42− (g/L) | pH |
---|---|---|---|---|---|---|
1 | 1.63 | 1.10 | 12.77 | 3.63 | 129 | 1.03 |
2 | 1.50 | 1.50 | 12.19 | 3.47 | 187 | 1.00 |
3 | 1.63 | 1.20 | 13.34 | 3.75 | 186 | 1.08 |
4 | 1.50 | 1.30 | 12.47 | 3.62 | 187 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepúlveda, R.; Martínez, M.; Hernández, P.; Guzmán, A.; Castillo, J. Effect of Chloride and Ferrous Ions on Improving Copper Leaching from Black Copper Ores. Processes 2024, 12, 13. https://doi.org/10.3390/pr12010013
Sepúlveda R, Martínez M, Hernández P, Guzmán A, Castillo J. Effect of Chloride and Ferrous Ions on Improving Copper Leaching from Black Copper Ores. Processes. 2024; 12(1):13. https://doi.org/10.3390/pr12010013
Chicago/Turabian StyleSepúlveda, Rossana, Melissa Martínez, Pía Hernández, Alexis Guzmán, and Jonathan Castillo. 2024. "Effect of Chloride and Ferrous Ions on Improving Copper Leaching from Black Copper Ores" Processes 12, no. 1: 13. https://doi.org/10.3390/pr12010013
APA StyleSepúlveda, R., Martínez, M., Hernández, P., Guzmán, A., & Castillo, J. (2024). Effect of Chloride and Ferrous Ions on Improving Copper Leaching from Black Copper Ores. Processes, 12(1), 13. https://doi.org/10.3390/pr12010013