Microbial Population Dynamics during Unstable Operation of a Semicontinuous Anaerobic Digester Fed with a Mild-Treated Olive Mill Solid Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Thermo-Malaxation Pre-Treatment
2.3. Semi-Continous Anaerobic Process Procedure
2.4. DNA Extraction and Library Preparation
2.5. Bioinformatics Analysis
3. Results and Discussion
3.1. Methane Production along Operation Time
3.2. Control Parameters along Operation Time
3.3. Variation of the Concentration of Phenolic Compounds along Operation Time
3.4. Microbial Population Dynamics along Operation Time
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiménez Marquez, A.; Hermoso Fernández, M.; Uceda Ojeda, M. Extraction of Virgin Olive Oil by Two-Phase Continuous System. Influence of Different Variables of the Process on Certain Parameters Related to Oil Quality. Grasas y Aceites 1995, 46, 299–303. [Google Scholar] [CrossRef]
- Fermoso, F.G.; Serrano, A.; Alonso-Fariñas, B.; Fernández-Bolaños, J.; Borja, R.; Rodríguez-Gutiérrez, G. Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes; American Chemical Society: Washington, DC, USA, 2018; Volume 66, pp. 8451–8468. [Google Scholar]
- Lama-Muñoz, A.; Rubio-Senent, F.; Bermúdez-Oria, A.; Fernández-Bolaños, J.; Prior, Á.F.; Rodríguez-Gutiérrez, G. The Use of Industrial Thermal Techniques to Improve the Bioactive Compounds Extraction and the Olive Oil Solid Waste Utilization. Innov. Food Sci. Emerg. Technol. 2019, 55, 11–17. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Fernández-Prior, Á.; Bermúdez-Oria, A.; Fernández-Bolaños, J.; Espejo-Calvo, J.A.; López-Maestro, F.; Rodríguez-Gutiérrez, G. Evolution of Hydroxytyrosol, Hydroxytyrosol 4-β-D-Glucoside, 3,4-Dihydroxyphenylglycol and Tyrosol in Olive Oil Solid Waste or “Alperujo”. Molecules 2022, 27, 8380. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.; Fermoso, F.G.; Alonso-Fariñas, B.; Rodríguez-Gutiérrez, G.; López, S.; Fernandez-Bolaños, J.; Borja, R. Performance Evaluation of Mesophilic Semi-Continuous Anaerobic Digestion of High-Temperature Thermally Pre-Treated Olive Mill Solid Waste. Waste Manag. 2019, 87, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Girardi, F.; Mascitti, A.; d’Alessandro, N.; Tonucci, L.; Marzo, G.A.; Remetti, R. Effects of Oxidative Treatments on Biomethane Potential of Solid Olive Residues. Waste Biomass Valorization 2023, 14, 1525–1538. [Google Scholar] [CrossRef]
- Fernández-Prior, Á.; Trujillo-Reyes, Á.; Serrano, A.; Rodríguez-Gutiérrez, G.; Reinhard, C.; Fermoso, F.G. Biogas Potential of the Side Streams Obtained in a Novel Phenolic Extraction System from Olive Mill Solid Waste. Molecules 2020, 25, 5438. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; ISBN 9780875532356. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomoybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Fernández-Prior, Á.; Cardoso, J.C.; Bermúdez-Oria, A.; Reyes, Á.T.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Application of a Cold-Pressing Treatment to Improve Virgin Olive Oil Production and the Antioxidant Phenolic Profile of Its by-Products. Antioxidants 2023, 12, 1162. [Google Scholar] [CrossRef]
- Ramiro-Garcia, J.; Hermes, G.D.A.; Giatsis, C.; Sipkema, D.; Zoetendal, E.G.; Schaap, P.J.; Smidt, H.; Schmidt, T.S.B.; Tremblay, J.; Fouhy, F.; et al. NG-Tax, a Highly Accurate and Validated Pipeline for Analysis of 16S RRNA Amplicons from Complex Biomes. F1000Research 2018, 5, 1791. [Google Scholar] [CrossRef]
- Paulo, L.M.; Castilla-Archilla, J.; Ramiro-Garcia, J.; Escamez-Picón, J.A.; Hughes, D.; Mahony, T.; Murray, M.; Wilmes, P.; O’Flaherty, V. Microbial Community Redundancy and Resilience Underpins High-Rate Anaerobic Treatment of Dairy-Processing Wastewater at Ambient Temperatures. Front. Bioeng. Biotechnol. 2020, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R Tools for Integrating Phylogenies and Ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Wickham, H. Programming with Ggplot2; Springer: Berlin/Heidelberg, Germany, 2016; pp. 241–253. [Google Scholar] [CrossRef]
- Serrano, A.; Villa-Gomez, D.; Fermoso, F.G.; Alonso-Fariñas, B. Is Anaerobic Digestion a Feasible Alternative to the Combustion of Olive Mill Solid Waste in Terms of Energy Production? A Critical Review. Biofuels Bioprod. Biorefining 2021, 15, 150–162. [Google Scholar] [CrossRef]
- Cubero-Cardoso, J.; Muñoz-Arjona, A.; Trujillo-Reyes, Á.; Serrano, A.; Alonso-Fariñas, B.; Rodríguez-Gutiérrez, G.; Urbano, J.; Borja, R.; Fermoso, F.G. Mesophilic Semi-Continuous Anaerobic Digestion of Strawberry Extrudate Pretreated with Steam Explosion. Foods 2020, 9, 1887. [Google Scholar] [CrossRef]
- Xu, R.Z.; Fang, S.; Zhang, L.; Huang, W.; Shao, Q.; Fang, F.; Feng, Q.; Cao, J.; Luo, J. Distribution Patterns of Functional Microbial Community in Anaerobic Digesters under Different Operational Circumstances: A Review. Bioresour. Technol. 2021, 341, 125823. [Google Scholar] [CrossRef]
- Serrano, A.; Fermoso, F.G.; Alonso-Fariñas, B.; Rodríguez-Gutiérrez, G.; López, S.; Fernandez-Bolaños, J.; Borja, R. Long-Term Evaluation of Mesophilic Semi-Continuous Anaerobic Digestion of Olive Mill Solid Waste Pretreated with Steam-Explosion. Energies 2019, 12, 2222. [Google Scholar] [CrossRef]
- Montañés, R.; Pérez, M.; Solera, R. Mesophilic Anaerobic Co-Digestion of Sewage Sludge and a Lixiviation of Sugar Beet Pulp: Optimisation of the Semi-Continuous Process. Bioresour. Technol. 2013, 142, 655–662. [Google Scholar] [CrossRef]
- Casallas-Ojeda, M.R.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Identification of Factors and Variables That Influence the Anaerobic Digestion of Municipal Biowaste and Food Waste. Waste Biomass Valorization 2021, 12, 2889–2904. [Google Scholar] [CrossRef]
- Nagarajan, S.; Jones, R.J.; Oram, L.; Massanet-Nicolau, J.; Guwy, A. Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty—A Perspective. Fermentation 2022, 8, 325. [Google Scholar] [CrossRef]
- Battista, F.; Fino, D.; Erriquens, F.; Mancini, G.; Ruggeri, B. Scaled-up Experimental Biogas Production from Two Agro-Food Waste Mixtures Having High Inhibitory Compound Concentrations. Renew. Energy 2015, 81, 71–77. [Google Scholar] [CrossRef]
- Caroca, E.; Serrano, A.; Borja, R.; Jiménez, A.; Carvajal, A.; Braga, A.F.M.; Rodriguez-Gutierrez, G.; Fermoso, F.G. Influence of Phenols and Furans Released during Thermal Pretreatment of Olive Mill Solid Waste on Its Anaerobic Digestion. Waste Manag. 2021, 120, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, P.S.; Fòlino, A.; Tamburino, V.; Zappia, G.; Zema, D.A. Increasing the Tolerance to Polyphenols of the Anaerobic Digestion of Olive Wastewater through Microbial Adaptation. Biosyst. Eng. 2018, 172, 19–28. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. II: Inhibitors and Mechanisms of Inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Mao, C.; Wang, Y.; Wang, X.; Ren, G.; Yuan, L.; Feng, Y. Correlations between Microbial Community and C:N:P Stoichiometry during the Anaerobic Digestion Process. Energy 2019, 174, 687–695. [Google Scholar] [CrossRef]
- Liu, Q.; Ren, Z.J.; Huang, C.; Liu, B.; Ren, N.; Xing, D. Multiple Syntrophic Interactions Drive Biohythane Production from Waste Sludge in Microbial Electrolysis Cells. Biotechnol. Biofuels 2016, 9, 162. [Google Scholar] [CrossRef]
- Vázquez-Fernández, A.; Suárez-Ojeda, M.E.; Carrera, J. Review about Bioproduction of Volatile Fatty Acids from Wastes and Wastewaters: Influence of Operating Conditions and Organic Composition of the Substrate. J. Environ. Chem. Eng. 2022, 10, 107917. [Google Scholar] [CrossRef]
- Roy, C.K.; Hoshiko, Y.; Toya, S.; Maeda, T. Effect of Different Concentrations of Sodium Selenite on Anaerobic Digestion of Waste Sewage Sludge. Environ. Technol. Innov. 2022, 27, 102403. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, H.; Zheng, D.; Pu, X.; Liu, Y.; Wang, L.; Zhang, Y.; Deng, L. Methanogenic Activity and Microbial Communities Characteristics in Dry and Wet Anaerobic Digestion Sludges from Swine Manure. Biochem. Eng. J. 2019, 152, 107390. [Google Scholar] [CrossRef]
- Azarmanesh, R.; Zarghami Qaretapeh, M.; Hasani Zonoozi, M.; Ghiasinejad, H.; Zhang, Y. Anaerobic Co-Digestion of Sewage Sludge with Other Organic Wastes: A Comprehensive Review Focusing on Selection Criteria, Operational Conditions, and Microbiology. Chem. Eng. J. Adv. 2023, 14, 100453. [Google Scholar] [CrossRef]
DLP | SP | Inoculum | ||
---|---|---|---|---|
pH | 4.9 ± 0.1 | 4.6 ± 0.1 | 7.4 ± 0.1 | |
TS | mg/kg | 43,135 ± 188 | 428,811 ± 6716 | 57,126 ± 437 |
MS | mg/kg | 9403 ± 285 | 16,827 ± 605 | 19,988 ± 252 |
VS | mg/kg | 33,732 ± 461 | 411,984 ± 7023 | 37,138 ± 388 |
VS/TS | 0.78 ± 0.01 | 0.96 ± 0.02 | 0.65 ± 0.01 | |
tCOD | mg O2/kg | 98,148 ± 565 | 576,024 ± 40,220 | 77,792 ± 1738 |
sCOD | mg O2/L | 92,650 ± 1322 | 60,076 ± 4755 | 3115 ± 212 |
Total phenolics | mg gallic acid eq./kg | 2396 ± 84 | 3935 ± 155 | 106 ± 4 |
C2 | mg O2/L | - | - | 1316 ± 9 |
C3 | mg O2/L | - | - | 1113 ± 8 |
i-C4 | mg O2/L | - | - | 41 ± 1 |
n-C4 | mg O2/L | - | - | 487 ± 4 |
i-C5 | mg O2/L | - | - | 142 ± 1 |
n-C5 | mg O2/L | - | - | 476 ± 4 |
Total VFA | mg O2/L | - | - | 3576 ± 10 |
Alkalinity | mg CaCO3/L | - | - | 7044 ± 175 |
1 HRT | 2 HRT | 3 HRT | |
---|---|---|---|
OLR (g VS/L d) | 1 | 1 | 1 |
Days | 0–21 | 22–42 | 43–60 |
pH | 7.5 ± 0.1 | 7.2 ± 0.1 | 6.8 ± 0.1 |
Alkalinity (mg CaCO3/L) | 7967 ± 2000 | 4065 ± 747 | 2270± 709 |
TS (mg/L) | 18,940 ± 2316 | 14,223 ± 887 | 12,908 ± 891 |
VS (mg/L) | 9832 ± 628 | 9823 ± 398 | 10,389 ± 575 |
sCOD (mg O2/L) | 3695 ± 1125 | 1912 ± 540 | 1968 ± 250 |
Total VFA (mg O2/L) | 3280 ± 2083 | 751 ± 500 | 210± 182 |
Total phenols (mg gallic acid eq./L) | 149 ± 30 | 243 ± 17 | 244 ± 8 |
Methane production yield (mL CH4/g VS d) | 204 ± 9 | 135 ± 18 | 87 ± 24 |
Biodegradability CH4 (%) | 74 ± 40 | 48 ± 33 | 27 ± 15 |
Days | 12 | 19 | 26 | 34 | 40 | 47 | 54 | 61 | ||
---|---|---|---|---|---|---|---|---|---|---|
R.T. | λmax (nm) | Concentration µg/L | ||||||||
vanillic acid | 17.8 | 254 | 825 ± 102.5 | 720 ± 2.5 | 372.5 ± 12.5 | 307.5 ± 20 | N.D. | N.D. | N.D. | N.D. |
4-hydroxybenzoic acid | 34.1 | 254 | 262.5 ± 10 | 285 ± 5 | 260 ± 30 | 240 ± 15 | 165 ± 7.5 | 85 ± 15 | 395 ± 12.5 | 285 ± 2.5 |
catechin | 37.6 | 280 | N.D. | 2037.5 ± 72.5 | 2342.5 ± | 2832.5 ± 360 | 2647.5 ± 72.5 | 4297.5 ± 90 | 5210 ± 80 | 4012.5 ± 67.5 |
4-ethylphenol | 49.2 | 280 | traces | traces | traces | traces | traces | traces | traces | traces |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cubero-Cardoso, J.; Fernández-Prior, Á.; Ramiro-Garcia, J.; Trujillo-Reyes, A.; Caballero-Guerrero, B.; Rodríguez-Gutiérrez, G.; Fermoso, F.G. Microbial Population Dynamics during Unstable Operation of a Semicontinuous Anaerobic Digester Fed with a Mild-Treated Olive Mill Solid Waste. Processes 2023, 11, 2724. https://doi.org/10.3390/pr11092724
Cubero-Cardoso J, Fernández-Prior Á, Ramiro-Garcia J, Trujillo-Reyes A, Caballero-Guerrero B, Rodríguez-Gutiérrez G, Fermoso FG. Microbial Population Dynamics during Unstable Operation of a Semicontinuous Anaerobic Digester Fed with a Mild-Treated Olive Mill Solid Waste. Processes. 2023; 11(9):2724. https://doi.org/10.3390/pr11092724
Chicago/Turabian StyleCubero-Cardoso, Juan, África Fernández-Prior, Javier Ramiro-Garcia, Angeles Trujillo-Reyes, Belén Caballero-Guerrero, Guillermo Rodríguez-Gutiérrez, and Fernando G. Fermoso. 2023. "Microbial Population Dynamics during Unstable Operation of a Semicontinuous Anaerobic Digester Fed with a Mild-Treated Olive Mill Solid Waste" Processes 11, no. 9: 2724. https://doi.org/10.3390/pr11092724
APA StyleCubero-Cardoso, J., Fernández-Prior, Á., Ramiro-Garcia, J., Trujillo-Reyes, A., Caballero-Guerrero, B., Rodríguez-Gutiérrez, G., & Fermoso, F. G. (2023). Microbial Population Dynamics during Unstable Operation of a Semicontinuous Anaerobic Digester Fed with a Mild-Treated Olive Mill Solid Waste. Processes, 11(9), 2724. https://doi.org/10.3390/pr11092724