Antimicrobial Resistance of Heterotrophic Bacteria and Enterobacteriaceae Inhabiting an Anthropogenic-Affected River Stretch in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Studied River Section
2.2. River Water Sampling Points
2.3. Enumeration of Total Cultivable Heterotrophic Bacteria and Antibiotic-Resistant Bacteria
2.4. Enumeration and Isolation of E. coli and Coliforms
2.5. Biochemical Identification of Enterobacteriaceae Isolates
2.6. Determination of Antibiotic-Resistance Pattern of Bacterial Isolates
2.7. Statistical Analysis of the Data
3. Results
3.1. Microbiological Characteristics of River Water
3.2. Prevalence of Antibiotic-Resistant Bacteria in the River Water
- -
- the lowest rate of different ARB in the upstream river section outside the urban territory of Veliko Tarnovo (SP 1), especially of tetracycline- and sulfamethoxazole-resistant bacteria;
- -
- raised dissemination of different types of ARB in the Yantra River in the urban territory of Veliko Tarnovo in comparison with the less urbanized area near SP 1, with the lowest value for tetracycline-resistant bacteria and a similar abundance of the other types of ARB;
- -
- a broader spread of ARB in the Belitsa River stretch compared to the Yantra River, so the confluence of the Belitsa River together with effluents discharged contribute to the increasing AMR to all ABs, except sulfamethoxazole, in the main water body.
3.3. AMR Phenotype of Enterobacteriaceae Isolated from River Water
3.4. AMR Prevalence Depending on the Sampling Point
4. Discussion
4.1. Prevalence of AMR among Riverine Heterotrophic Bacteria
4.2. Prevalence of AMR among Enterobacteriaceae Isolates from the Yantra River Stretch
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | Antibiotic |
AMC | Amoxicillin/clavulanic acid |
AMP | Ampicillin |
AMR | Antimicrobial resistance |
ANOVA | One-way analysis of variance |
ARB | Antibiotic-resistant bacteria |
ARG | Antibiotic resistance gene |
C | Chloramphenicol |
CIA | Critically important antimicrobial |
CIP | Ciprofloxacin |
CFU | Colony form unit |
CLSI | Clinical and Laboratory Standards Institute |
COT | Co-trimoxazole (trimethoprim/sulfamethoxazole) |
CTR | Ceftriaxone |
CTX | Cefotaxime |
CPM | Cefepime |
CX | Cefoxitin |
ECDC | European Centre for Disease Prevention and Control |
EU | European Union |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
GEN | Gentamycin |
HPC | Heterotrophic plate count |
IPM | Imipenem |
MAR | Multiple antibiotic resistance |
P | Probability |
r | Pearson correlation coefficient |
S | Streptomycin |
SPs | Sampling points |
Sul | Sulfamethoxazole |
TE | Tetracycline |
WHO | World Health Organization |
WW | Waste water |
WWTP | Waste water treatment plant |
References
- Goñi-Urriza, M.; Capdepuy, M.; Arpin, C.; Raymond, N.; Caumette, P.; Quentin, C. Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl. Environ. Microbiol. 2000, 66, 125–132. [Google Scholar] [CrossRef]
- Singh, A.K.; Kaur, R.; Verma, S.; Singh, S. Antimicrobials and antibiotic resistance genes in water bodies: Pollution, risk, and control. Front. Environ. Sci. 2022, 10, 830861. [Google Scholar] [CrossRef]
- Kulik, K.; Lenart-Boro, K.; Wyrzykowska, K. Impact of antibiotic pollution on the bacterial population within surface water with special focus on mountain rivers. Water 2023, 15, 975. [Google Scholar] [CrossRef]
- Sanseverino, I.; Cuenca, A.N.; Loos, R.; Marinov, D.; Lettieri, T. State of the Art on the Contribution of Water to Antimicrobial Resistance; EUR 29592 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-98478-5. [Google Scholar] [CrossRef]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 2018, 618, 409–418. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Сhemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef]
- Daverio, E.; Ghiani, M.; Bernasconi, C. Antibiotics and Antibiotic-Resistant Bacteria in Aquatic Environment: A Review. 2004. EC, JRC, p.77. EN 21201. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC28124 (accessed on 1 August 2023).
- Commission of the European Communities. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Office for Official Publications of the European Communities: Luxembourg, 2000; Volume 43, p. 327. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2000:327:FULL (accessed on 1 August 2023).
- Liguori, K.; Keenum, I.; Davis, B.C.; Calarco, J.; Milligan, E.; Harwood, V.J.; Pruden, A. Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environ. Sci. Technol. 2022, 56, 9149–9160. [Google Scholar] [CrossRef]
- Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015, 20, 243–252. [Google Scholar] [CrossRef]
- Manaia, C.M.; Macedo, G.; Fatta-Kassinos, D.; Nunes, O.C. Antibiotic resistance in urban aquatic environments: Can it be controlled? Appl. Microbiol. Biotechnol. 2016, 100, 1543–1557. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Kassinos, D.F.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar]
- Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiol. Rev. 2014, 38, 761–778. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Vasconcelos, A.; Mendes, Â.; Martins, F.; Lopes, E.; Machado, A.; Bordalo, A.A.; Vaz-Pires, P.; Vieira, N.; da Costa, P.M.; Bessa, L.J. River water analysis using a multiparametric approach: Portuguese river as a case study. J. Water Health 2018, 16, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E.; Moore, P.J.A.; Millar, B.C.; Goldsmith, C.E.; Loughrey, A.; Rooney, P.J.; Rao, J.R. The presence of antibiotic resistant bacteria along the River Lagan. Agricult. Water Manag. 2010, 98, 217–221. [Google Scholar] [CrossRef]
- Harnisz, M. Total resistance of native bacteria as an indicator of changes in the water environment. Environ. Pollut. 2013, 174, 85–92. [Google Scholar] [CrossRef]
- Ferreira da Silva, M.; Vaz-Moreira, I.; Gonzalez-Pajuelo, M.; Nunes, O.C.; Manaia, C.M. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 2007, 60, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Honda, R.; Watanabe, T.; Sawaittayotin, V.; Masago, Y.; Chulasak, R.; Tanong, K.; Chaminda, G.T.; Wongsila, K.; Sienglum, C.; Sunthonwatthanaphong, V.; et al. Impacts of urbanization on the prevalence of antibiotic resistant Escherichia coli in the Chaophraya River and its tributaries. Water Sci. Technol. 2016, 73, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; Jofre, J.; Balcazar, J.L. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 2013, 8, e78906. [Google Scholar] [CrossRef]
- Osińska, A.; Korzeniewska, E.; Harnisz, M.; Niestępski, S. The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate. Sci. Total Environ. 2017, 15, 577, 367–375. [Google Scholar] [CrossRef]
- Marinescu, F.; Marutescu, L.; Savin, I.; Lazar, V. Antibiotic resistance markers among Gram-negative isolates from wastewater and receiving rivers in South Romania. Rom. Biotechnol. Lett. 2015, 20, 10055–10069. [Google Scholar]
- Zarfel, G.; Folli, B.; Lipp, M.; Pfeifer, B.; Baumert, B.; Farnleitner, A.; Kirschner, A.; Kittinger, C. Spread of non-wild type antibiotic resistant phenotypes in the river Danube. In Joint Danube Survey. A Comprehensive Analysis of Danube Water Quality; Liška, I., Wagner, F., Sengl, M., Deutsch, K., Slobodník, J., Eds.; ICPDR-International Commission for the Protection of the Danube River: Vienna, Austria, 2015; pp. 169–172. [Google Scholar]
- Kittinger, C.; Lipp, M.; Folli, B.; Kirschner, A.; Baumert, R.; Galler, H. Enterobacteriaceae isolated from the river Danube: Antibiotic resistances, with a focus on the presence of ESBL and carbapenemases. PLoS ONE 2016, 11, e0165820. [Google Scholar] [CrossRef]
- Zurfluh, K.; Hachler, H.; Nuesch-Inderbinen, M.; Stephan, R. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Appl. Environ. Microbiol. 2013, 79, 3021–3026. [Google Scholar] [CrossRef] [PubMed]
- Kürekci, C.; Aydin, M.; Yipel, M.; Katouli, M.; Gündogdu, A. Characterization of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in Asi (Orontes) River in Turkey. J. Water Health 2017, 15, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Koczura, R.; Mokracka, J.; Jabłońska, L.; Gozdecka, E.; Kubek, M.; Kaznowski, A. Antimicrobial resistance of integron- harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. Sci. Total Environ. 2012, 414, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Ash, R.J.; Mauck, B.; Morgan, M. Antibiotic resistance of Gram-negative bacteria in rivers, United States. Emerg. Inf. Dis. 2002, 8, 240–247. [Google Scholar] [CrossRef]
- Kim, T.; Joung, W.Y.; Han, J.H.; Jung, W.; Kim, S.B. Antibiotic resistance among aquatic bacteria in natural freshwater environments of Korea. J. Water Health 2015, 13, 1085–1097. [Google Scholar] [CrossRef]
- Djouadi, L.N.; Selama, O.; Abderrahmani, A.; Bouanane-Darenfed, A.; Abdellaziz, L.; Amziane, M.; Fardeau, M.L.; Nateche, F. Multiresistant opportunistic pathogenic bacteria and detection of nontuberculous mycobacteria. J. Water Health 2017, 15, 566–578. [Google Scholar] [CrossRef]
- Biyela, P.T.; Lin, J.; Bezuidenhout, C.C. The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Sci. Technol. 2004, 1, 45–50. [Google Scholar] [CrossRef]
- Ayandiran, T.A.; Ayandele, A.A.; Dahunsi, S.O.; Ajala, O.O. Microbiological assessment and prevalence of antibiotic resistance in polluted Oluwa iver, Nigeria. Egypt. J. Aquatic Res. 2014, 40, 291–299. [Google Scholar] [CrossRef]
- Moore, J.E.; Rao, J.R.; Moore, P.J.A.; Millar, B.C.; Goldsmith, C.E.; Loughrey, A.; Rooney, P.J. Determination of total antibiotic resistance in waterborne bacteria in rivers and streams in Northern Ireland: Can antibiotic-resistant bacteria be an indicator of ecological change? Aquat. Ecol. 2010, 44, 349–358. [Google Scholar] [CrossRef]
- EN ISO 19458:2006; Water Quality. Sampling for Microbiological Analysis. ISO: Geneva, Switzerland, 2006.
- EN ISO 9308-1:2014; Water Quality. Enumeration of Escherichia coli and Coliforms. Part 1: Membrane Filtration Method. ISO: Geneva, Switzerland, 2014.
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing. 2013. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2021/Intrinsic_Resistance_and_Unusual_Phenotypes_Tables_v3.3_20211018.pdf (accessed on 1 August 2023).
- Ministry of Environment and Water (MOEW). Regional Environment and Water Inspectorate—Veliko Tarnovo. Annual Report on the State of the Environment for 2020. Available online: https://www.riosvt.org/wp-content/uploads/2021/05/RIOSV-VT-reg.doklad_2020-1-1.pdf (accessed on 1 August 2023). (In Bulgarian).
- Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160/EEC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:064:0037:0051:EN:PDF (accessed on 1 August 2023).
- Kirschner, A.; Jakwerth, S.; Kolarevic, S.; Sommer, R.; Blaschke, A.P.; Kavka, G.; Reischner, G.; Farnleitner, A. Bacterial faecal indicators. In Joint Danube Survey 3. A Comprehensive Analysis of Danube Water Quality; Liška, I., Wagner, F., Sengl, M., Deutsch, K., Slobodník, J., Eds.; ICPDR-International Commission for the Protection of the Danube River: Vienna, Austria, 2015; pp. 155–161. [Google Scholar]
- Kavka, G.; Poetsch, E. Microbiology. In Joint Danube Survey. Technical Report of the International Commission for the Protection of the Danube River; Literathy, P., Koller-Kreimel, V., Liška, I., Eds.; ICPDR-International Commission for the Protection of the Danube River: Vienna, Austria, 2002; pp. 138–150. [Google Scholar]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed.; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Sanderson, C.E.; Fox, J.T.; Dougherty, E.R.; Cameron, A.D.S.; Alexander, K.A. The changing face of water: A dynamic reflection of antibiotic resistance across landscapes. Front. Microbiol. 2018, 9, 1894. [Google Scholar] [CrossRef]
- Yoo, H.N.; Ki, S.J.; Kang, J.H.; Ham, Y.S.; Cha, S.M.; Lee, S.W.; Lee, S.Y.; Kim, J.H. Occurrence of antibiotic resistant E. coli in surface sater: A study in a typical urban watershed, Korea. Water Pract. Technol. 2010, 5, wpt2010056. [Google Scholar] [CrossRef]
- Han, N.; Sheng, D.; Xu, H. Role of Escherichia coli strain subgroups, integrons, and integron-associated gene cassettes in dissemination of antimicrobial resistance in aquatic environments of Jinan, China. Water Sci. Technol. 2012, 66, 2385–2392. [Google Scholar] [CrossRef] [PubMed]
- WHO/ECDC. World Health Organization Regional Office for Europe/European Centre for Disease Prevention and Control. In Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Joint-WHO-ECDC-AMR-report-2022.pdf (accessed on 1 August 2023).
- Dimitrova, L.; Kaleva, M.; Zaharieva, M.M.; Stoykova, C.; Tsvetkova, I.; Angelovska, M.; Ilieva, Y.; Kussovski, V.; Naydenska, S.; Najdenski, H. Prevalence of Antibiotic-Resistant Escherichia coli Isolated from Swine Faeces and Lagoons in Bulgaria. Antibiotics 2021, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Zarfel, G.; Lipp, M.; Gürtl, E.; Folli, B.; Baumert, R.; Kittinger, C. Troubled water under the bridge: Screening of river Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Sci. Total Environ. 2017, 593–594, 399–405. [Google Scholar] [CrossRef]
SPs No. | Description of the Sampling Points |
---|---|
1 | Yantra River upstream from the territory of the town of Veliko Tarnovo—bridge in the village of Shemshevo; right bank (43.075976, 25.550696) |
2 | Yantra River before the confluence of the Belitsa River and downstream from discharge of sewerage water (80 L/s) from western urban industrial zone—bridge at ZZU plant; left bank (43.061276, 25.594128) |
3 | Yantra River after the confluence of the Belitsa River—bridge in Cholakovtsi residential quarter of the town of Veliko Tarnovo, upstream from effluent discharges (30 L/s and 40 L/s); left bank (43.061739, 25.603784) |
4 | Yantra River in the outskirts of the town, after prolonged river meandering through the urban territory of V. Turnovo—bridge in Asenevtsi urban residential quarter; left bank (43.085281, 25.649081) |
5 | Yantra River downstream from the urban territory of Veliko Tarnovo, about 9.3 km after the inflow of treated WW from the municipal WWTP—bridge at Samovodene village; right bank (43.136811, 25.613601) |
6 | Belitsa River upstream from the urban territory of Debelets—south bridge on the Hainboaz Pass Motorway; right bank (43.034664, 25.628161) |
7 | Belitsa River in the urban area of the town of Debelets, downstream from the inflow of untreated WW; right bank (43.047289, 25.615540) |
8 | Belitsa River after confluence of the Dryanovska River—north bridge in the outskirts of Debelets; left bank (43.049500, 25.607300) |
SPs No. | HPC *, CFU/mL (Total n, 69) | Range of HPC (Min–Max) | E. coli, CFU/100 mL (Total n, 61) | Range of E. coli (Min–Max) CFU/100 mL | Coliforms, CFU/100 mL (Total n, 61) | Range of Coliforms (Min–Max) |
---|---|---|---|---|---|---|
1 | 9.2 ± 1.9 × 104 | 3.8 × 104–1.5 × 105 | 2.9 ± 2.2 × 102 | 6.3 × 101–9.0 × 102 | 3.7 ± 2.3 × 102 | 9.8 × 101–9.0 × 102 |
2 | 1.5 ± 0.4 × 105 | 1.0 × 105–2.0 × 105 | 3.3 ± 3.0 × 104 | 4.5 × 103–7.0 × 104 | 5.3 ± 5.3 × 105 | 9.3 × 103–2.0 × 106 |
3 | 1.5 ± 0.6 × 105 | 1.3 × 104–3.5 × 105 | 4.7 ± 4.6 × 104 | 2.3 × 103–2.4 × 105 | 5.8 ± 4.7 × 104 | 3.4 × 103–2.4 × 105 |
4 | 7.9 ± 4.7 × 104 | 3.0 × 103–1.9 × 105 | 5.0 ± 2.4 × 103 | 9.0 × 102–1.0 × 104 | 6.9 ± 3.1 × 103 | 1.3 × 103–1.3 × 104 |
5 | 9.5 ± 9.7 × 104 | 8.7 × 102–3.0 × 105 | 9.7 ± 7.8 × 103 | 2.9 × 103–2.0 × 104 | 1.2 ± 0.8 × 104 | 4.7 × 103–2.0 × 104 |
6 | 3.7 ± 3.4 × 104 | 8.0 × 103–1.0 × 105 | 2.6 ± 1.5 × 103 | 6.0 × 102–8.4 × 103 | 3.3 ± 2.3 × 103 | 6.0 × 102–1.3 × 104 |
7 | 1.8 ± 1.4 × 105 | 4.8 × 104–3.9 × 105 | 3.6 ± 2.8 × 105 | 3.0 × 104–7.8 × 105 | 4.0 ± 3.4 × 105 | 3.0 × 104–9.3 × 105 |
8 | 2.7 ± 5.0 × 104 | 5.9 × 103–9.8 × 104 | 1.7 ± 0.7 × 104 | 1.4 × 104–2.4 × 104 | 2.1 ± 1.4 × 104 | 1.5 × 104–3.4 × 104 |
Sampling Point No. | Heterotrophic Bacteria Resistant to Individual ABs, % | ||||
---|---|---|---|---|---|
AMP | TE | C | CIP | Sul | |
1 | 3.4 (4.2) | 0.7 (0.5) | 4.2 (2.3) | 2.6 (2.1) | 0.6 (0.7) |
2 | 16.5 (12.4) | 3.4 (0.9) | 9.9 (4.2) | 14.1 (7.8) | 7.8 (3.8) |
3 | 9.8 (5.0) | 2.5 (1.9) | 9.8 (2.8) | 9.7 (4.6) | 12.3 (8.6) |
4 | 3.7 (2.1) | 1.6 (1.7) | 4.3 (3.9) | 2.1 (1.2) | 2.4 (1.4) |
5 | 4.3 (1.7) | 3.3 (2.0) | 7.3 (3.8) | 4.2 (1.7) | 6.2 (2.7) |
6 | 8.4 (4.1) | 2.0 (1.7) | 10.2 (7.0) | 19.5 (8.1) | 0.5 (0.6) |
7 | 10.3 (8.6) | 3.2 (1.6) | 11.1 (10.6) | 13.6 (10.0) | 5.3 (5.7) |
8 | 21.8 (15.0) | 5.1 (4.5) | 16.7 (10.1) | 30.0 (15.0) | 6.5 (7.8) |
Yantra River (SPs 1 ÷ 5; n = 32) | 7.4 (7.0) | 2.1 (1.8) | 7.3 (4.0) | 6.0 (5.5) | 6.9 (7.2) |
Belitsa River (SP 6 ÷ 8; n = 16) | 12.5 (9.8) | 3.0 (2.2) | 12.3 (8.1) | 20.1 (11.3) | 3.8 (5.7) |
Tested ABs | E. coli (n, 114) | Coliforms (n, 24) | ||
---|---|---|---|---|
R, % | I, % | R, % | I, % | |
AMP | 27 | 6 | 79 | 9 |
AMC | 14 | 19 | 21 | 0 |
CTX | 8 | 13 | 46 | 8 |
CTR | 4 | 0 | 42 | 8 |
CPM | 4 | 0 | 8 | 17 |
IPM | 0 | 1 | 0 | 17 |
CX | 5 | 4 | 17 | 0 |
CIP | 7 | 6 | 4 | 46 |
C | 10 | 1 | 0 | 0 |
COT | 9 | 0 | 50 | 0 |
GEN | 2 | 0 | 0 | 0 |
S | 17 | 24 | 0 | 4 |
TE | 23 | 1 | 33 | 0 |
Sensitive | 52 | 28 | 13 | 0 |
AMR1,2 | 32 | 52 | 54 | 62 |
MAR3÷6 | 16 | 20 | 33 | 38 |
No. | SPs No. | Strain No. | Biochemical Identification | AMR Phenotype (R) | MAR, n AB Groups |
---|---|---|---|---|---|
1 | 1 | e120 | E. coli | AMC, CX, S, TE | 3 |
2 | 1 | e122 | E. coli | AMP, AMC, CIP, S, TE | 4 |
3 | 2 | e148 | E. coli | AMP, C, S, TE | 4 |
4 | 4 | e81 | E. coli | AMP, CIP, COT, C, GEN, S, TE | 6 |
5 | 4 | e82 | E. coli | AMP, AMC, COT, GEN | 3 |
6 | 6 | e26 | E. coli | AMP, CTX, CTR, CPM, CX, COT, S, TE | 4 |
7 | 7 | e2 | E. coli | AMP, AMC, CIP, COT, C, S | 5 |
8 | 7 | e31 | E. coli | AMP, CIP, COT, S | 4 |
9 | 8 | e5 | E. coli | AMP, CTR, CPM, CX, CIP, COT, C, S, TE | 6 |
10 | 8 | e20 | E. coli | AMP, AMC, CTX, CX, CIP, COT, C, TE | 5 |
11 | 8 | e21 | E. coli | AMP, AMC, C, S, TE | 4 |
12 | 8 | e22 | E. coli | AMP, AMC, S, TE | 3 |
13 | 8 | e23 | E. coli | AMP, AMC, C, TE | 3 |
14 | 8 | e24 | E. coli | AMP, AMC, COT, C, S, TE | 5 |
15 | 8 | e30 | E. coli | AMP, AMC, CTX, CX, CIP, COT, C, TE | 5 |
16 | 8 | e31 | E. coli | CIP, S, TE | 3 |
17 | 8 | e33 | E. coli | AMP, CIP, COT, C, S, TE | 6 |
18 | 8 | e36 | E. coli | AMP, S, TE | 3 |
19 | 2 | c64 | Klebsiella spp. | AMP, CTX, COT, TE | 3 |
20 | 2 | c66 | Klebsiella spp. | AMP, CTX, CTR, COT, TE | 3 |
21 | 2 | c68 | Klebsiella spp. | AMP, CTR, COT, TE | 3 |
22 | 2 | c69 | Klebsiella spp. | AMP, CTX, COT, TE | 3 |
23 | 3 | c26 | Klebsiella spp. | AMP, CTX, CTR, CIP, COT, TE | 4 |
24 | 3 | c74 | Klebsiella spp. | AMP, CTX, CTR, COT, TE | 3 |
25 | 3 | c75 | Klebsiella spp. | AMP, CTX, CTR, COT, TE | 3 |
26 | 3 | c78 | Klebsiella spp. | AMP, CTX, CTR, COT, TE | 3 |
Tested AB | Number of MAR E. coli Isolates, n | Total Number of Resistant E. coli Isolates, n | Ratio MAR/Total AMR of E. coli, % | Number of MAR Coliforms, n | Total Number of Resistant Coliform Isolates, n | Ratio MAR/Total AMR of Coliforms, % |
---|---|---|---|---|---|---|
AMP | 16 | 31 | 52 | 8 | 19 | 42 |
AMC | 9 | 16 | 56 | 0 | 5 | 0 |
CTX | 3 | 9 | 33 | 7 | 11 | 64 |
CTR | 2 | 4 | 50 | 6 | 10 | 60 |
CPM | 2 | 4 | 50 | 0 | 2 | 0 |
CX | 5 | 6 | 83 | 0 | 4 | 0 |
TE | 14 | 26 | 54 | 8 | 8 | 100 |
S | 14 | 19 | 74 | 0 | 0 | 0 |
C | 10 | 11 | 91 | 0 | 0 | 0 |
COT | 10 | 10 | 100 | 8 | 12 | 67 |
CIP | 8 | 8 | 100 | 1 | 1 | 100 |
GEN | 2 | 2 | 100 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsvetanova, Z.; Najdenski, H. Antimicrobial Resistance of Heterotrophic Bacteria and Enterobacteriaceae Inhabiting an Anthropogenic-Affected River Stretch in Bulgaria. Processes 2023, 11, 2792. https://doi.org/10.3390/pr11092792
Tsvetanova Z, Najdenski H. Antimicrobial Resistance of Heterotrophic Bacteria and Enterobacteriaceae Inhabiting an Anthropogenic-Affected River Stretch in Bulgaria. Processes. 2023; 11(9):2792. https://doi.org/10.3390/pr11092792
Chicago/Turabian StyleTsvetanova, Zvezdimira, and Hristo Najdenski. 2023. "Antimicrobial Resistance of Heterotrophic Bacteria and Enterobacteriaceae Inhabiting an Anthropogenic-Affected River Stretch in Bulgaria" Processes 11, no. 9: 2792. https://doi.org/10.3390/pr11092792
APA StyleTsvetanova, Z., & Najdenski, H. (2023). Antimicrobial Resistance of Heterotrophic Bacteria and Enterobacteriaceae Inhabiting an Anthropogenic-Affected River Stretch in Bulgaria. Processes, 11(9), 2792. https://doi.org/10.3390/pr11092792