The Analysis and Rapid Non-Destructive Evaluation of Yongchuan Xiuya Quality Based on NIRS Combined with Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yongchuan Xiuya Samples
2.2. Main Instruments
2.3. Methods
2.3.1. Sensory Evaluation Method
2.3.2. Component Determination
Determination of Water Extracts [29]
Determination of Tea Polyphenols [44]
Determination of Free Amino Acid [30]
Determination of Total Sugar [45]
Determination of Flavone [46]
Determination of Gallic Acid, Caffeine, Catechin and Their Monomer Contents [47]
2.4. NIRS and Chemometrics Method
2.4.1. Spectra Acquisition
2.4.2. Spectral Pretreatment
2.4.3. Partial Least Squares Regression Method
2.4.4. Backpropagation Artificial Neural Network Method
2.4.5. Data Analysis
3. Results and Discussion
3.1. The Quality and Component Contents
3.2. Principal Component Analysis and Correlation Coefficient Analysis
3.3. Establishment of NIRS Model
3.3.1. Screening of Spectral Pretreatment Methods and Establishment of PLS Model
3.3.2. Establishment of BP-ANN Model
Principal Component Analysis
BP-ANN Model
3.3.3. Verification of the Practical Application Effect of the BP-ANN Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.S.; Kim, T.J.; Hong, S.K.; Min, C.Y.; Yoo, D.M.; Wee, J.H.; Choi, H.G. Impact of Coffee/Green Tea/Soft Drink Consumption on the Risk of Hyperuricemia: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 7299. [Google Scholar] [CrossRef]
- Li, N.; Li, W.R.; Zhang, L. On the formation and evolution of Tea in the United Kingdom. Fujian Tea 2023, 45, 175–177. [Google Scholar]
- Zhang, H.J. Traditional Chinese Tea: Reviewing the millennium Chinese tea culture in the World. Bus. Cult. 2018, 25, 16–21. [Google Scholar]
- Wang, Y.H. Discussion on the development strategy of Yongchuan Xiuya Tea. South. Agric. 2011, 5, 65–67+89. [Google Scholar]
- T/YCCYHX 003-2020; Geographical Indication Product-Yongchuan Xiuya. China Standards Press: Beijing, China, 2020.
- Hu, X.Y.; Li, C.; Wei, C.L.; Wu, Q.; Zhu, J.Z.; Shi, J.M. 2021 China Tea Regional Public Brand Value Evaluation Report. Chin. Teas 2021, 43, 32–51. [Google Scholar]
- Zhang, Y.; Zhong, Y.F.; Yuan, L.Y.; Luo, H.Y.; Wu, X.H. Study on different grade tea quality characteristics of Yunling-Yongchuan Xiuya. Southwest China J. Agric. Sci. 2015, 28, 84–89. [Google Scholar]
- Zhang, Y.; Zhong, Y.F.; Yuan, L.Y.; Deng, M.; Wu, X.H.; Tang, M. Study on Aroma Components in Yongchuan Xiuya tea. Southwest China J. Agric. Sci. 2012, 25, 2046–2049. [Google Scholar]
- Wan, C.P.; Hu, X.M.; Li, M.X.; Rengasamy, K.R.R.; Cai, Y.; Liu, Z.H. Potential protective function of green tea polyphenol EGCG against high glucose-induced cardiac injury and aging. J. Funct. Foods 2023, 104, 105506. [Google Scholar] [CrossRef]
- Oh, J.; Muthu, M.; Pushparaj, S.S.C.; Gopal, J. Anticancer therapeutic effects of green tea catechins (GTCs) when integrated with antioxidant natural components. Molecules 2023, 28, 2151. [Google Scholar] [CrossRef]
- Teixeira, O.J.; Machado, C.F.; Gonçalvez, S.T.; Dotto, S.G.; Santos, P.E.; Quevedo, C.P.; Andreazza, R.; Cavalheiro, S.P.; Pieniz, S. Green tea and kombucha characterization: Phenolic composition, antioxidant capacity and enzymatic inhibition potential. Food Chem. 2023, 408, 135206. [Google Scholar] [CrossRef]
- Li, P.F.; Huang, S.S.; Xiao, S.Y.; Xu, Y.H.; Wei, X.X.; Xiao, J.; Guo, Z.B.; Yu, Q.; Liu, M.Z. Antiviral activities of green tea components against grouper iridovirus infection in vitro and in vivo. Viruses 2022, 14, 1227. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.P.; Zhao, X.; Yi, Q.Y.; Zhou, L.; Li, M.X. Preventive effect of Yongchuan Xiuya on gastric injury in SD rats. J. Xuzhou Univ. Technol. (Nat. Sci. Ed.) 2014, 29, 77–80. [Google Scholar]
- Zhang, X.; Li, M.X.; Xie, X.H.; Mou, X.; Zhao, X. In vitro antioxidant and antimutagenic effects of Yongchuan Xiuya. J. Chongqing Second Norm. Univ. 2013, 26, 9–10+166. [Google Scholar]
- Li, X.; Tan, Y.; Wu, X.X.; Yi, Q.Y.; Zhao, X. The preventive effect of Yongchuan Xiuya on constipation in Kunming mice. J. Chongqing Second Norm. Univ. 2013, 26, 11–13. [Google Scholar]
- GB/T 23776-2018; Methodology for Sensory Evaluation of Tea. China Standards Press: Beijing, China, 2018.
- Kissing Kucek, L.; Dyck, E.; Russell, J.; Clark, L.; Hamelman, J.; Burns-Leader, S.; Senders, S.; Jones, J.; Benscher, D.; Davis, M. Evaluation of wheat and emmer varieties for artisanal baking, pasta making, and sensory quality. J. Cereal Sci. 2017, 74, 19–27. [Google Scholar] [CrossRef]
- Tiparat, T.; Robert, J.; Heather, S. Evaluating the sensory properties of unpolished Australian wild rice. Food Res. Int. 2018, 103, 406–414. [Google Scholar]
- Kortesniemi, K.; Rosenvald, S.; Laaksonen, O.; Vanag, A.; Ollikka, T.; Vene, K.; Yang, B. Sensory and chemical profiles of finnish honeys of different botanical origins and consumer preferences. Food Chem. 2018, 246, 351–359. [Google Scholar] [CrossRef]
- Han, X.; Jiang, H.; Han, L.; Xiong, X.; He, Y.; Fu, C.; Xu, R.; Zhang, D.; Lin, J.; Yang, M. A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle. Acta Pharm. Sin. B 2018, 8, 209–217. [Google Scholar] [CrossRef]
- Zhu, H.K.; Ye, Y.; He, H.F.; Dong, C.W. Evaluation of green tea sensory quality via process characteristics and image information. Food Bioprod. Process. 2017, 102, 116–122. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.X.; Kong, Y.W.; Peng, X.P.; Li, C.W. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatography-mass spectrometry, multivariate data analysis, and descriptive sensory analysis. Food Res. Int. 2017, 100, 267–275. [Google Scholar] [CrossRef]
- Zhu, J.C.; Feng, C.; Wang, L.Y.; Niu, Y.W.; Xiao, Z.B. Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose. Food Chem. 2017, 221, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Liu, B.L.; Chang, Y.N. Bioactivities and sensory evaluation of Pu-erh teas made from three tea leaves in an improved pile fermentation process. J. Biosci. Bioeng. 2010, 109, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.M.; Barimah, A.O.; Shujat, A.; Zhang, Z.Z.; Ouyang, Q.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B.; Chen, Q.S. Simultaneous quantification of active constituents and antioxidant capability of green tea using NIR spectroscopy coupled with swarm intelligence algorithm. LWT-Food Sci. Technol. 2020, 129, 109510. [Google Scholar] [CrossRef]
- Fang, S.M.; Ning, J.M.; Huang, W.J.; Zhang, G.; Deng, W.W.; Zhang, Z.Z. Identification of geographical origin of Keemun black tea based on its volatile composition coupled with multivariate statistical analyses. J. Sci. Food Agric. 2019, 99, 4344–4352. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Wang, J.J.; Wei, Y.M.; Deng, W.W.; Wan, X.C.; Bao, G.H.; Xie, Z.W.; Ling, T.J.; Ning, J.M. Metabolomics based on UHPLC-Orbitrap-MS and global natural product social molecular networking reveals effects of time scale and environment of storage on the metabolites and taste quality of raw Pu-erh tea. J. Agric. Food Chem. 2019, 67, 12084–12093. [Google Scholar] [CrossRef]
- Xu, J.Y.; Wang, M.; Zhao, J.P.; Wang, Y.H.; Tang, Q.; Khan, I.A. Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Res. Int. 2018, 107, 567–577. [Google Scholar] [CrossRef]
- GB/T 8305-2013; Tea-Determination of Water Extract. China Standards Press: Beijing, China, 2013.
- GB/T 8314-2013; Tea-Determination of Free Amino Acids Content. China Standards Press: Beijing, China, 2013.
- Yuan, L.Y.; Zhou, Z.K.; Li, Z.L.; Zhong, Y.F.; Deng, M.; Wu, X.H.; Zhang, Y. Study on the relationship between sensory quality and inner components of Yongchuan Xiuya. Farm Prod. Process. 2010, 6, 36–38. [Google Scholar]
- Fagnani, R.; Damião, B.M.C.; Trentin, R.P.S.; Vanot, R.L. Predicting adulteration of grated Parmigiano Reggiano cheese with Ricotta using electrophoresis, multivariate nonlinear regression and computational intelligence methods. Int. J. Dairy Technol. 2022, 75, 239–245. [Google Scholar] [CrossRef]
- Guillemain, A.; Dégardin, K.; Roggo, Y. Performance of NIR handheld spectrometers for the detection of counterfeit tablets. Talanta 2017, 165, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Wang, Y.F.; Cheng, J.J.; Wang, J.; Sun, X.D.; Sun, S.; Zhang, Z.Y. Enhanced cross-category models for predicting the total polyphenols, caffeine and free amino acids contents in Chinese tea using NIR spectroscopy. LWT 2018, 96, 90–97. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhang, Z.Z.; Ning, J.M.; Ren, G.X.; Yan, S.H.; Wan, X.C. Back propagation-artificial neural network model for prediction of the quality of tea shoots through selection of relevant near infrared spectral data via synergy interval partial least squares. Anal. Lett. 2013, 46, 184–195. [Google Scholar] [CrossRef]
- Wu, X.H.; He, F.; Wu, B.; Zeng, S.P.; He, C.Y. Accurate classification of Chunmee tea grade using NIR spectroscopy and fuzzy maximum uncertainty linear discriminant analysis. Foods 2023, 12, 541. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.T.; Zhong, Y.F.; Yuan, L.Y.; Wu, X.H.; Pi, L. Study on the effect of different striping techniques on the quality of Yongchuan Xiuya. South. Agric. 2009, 3, 51–52. [Google Scholar]
- Zhong, Y.F.; Li, Z.L.; Yuan, L.Y.; Zhou, Z.K.; Deng, M.; Jing, T.T.; Wu, X.H.; Zhang, Y. The effect of microwave sterilization on the quality of Yongchuan Xiuya. J. Guangdong Light Ind. Vocat. Tech. Coll. 2009, 8, 13–16. [Google Scholar]
- Jing, T.T. The influence of brewing conditions on the sensory quality of Yongchuan Xiuya. Tea Sci. Technol. 2009, 37, 21–22. [Google Scholar]
- Xie, Q.S.; Shen, R.; Li, L.; Zhao, Z.Z. Study on the extraction process of insoluble dietar y fiber from Yongchuan Xiuya tea residue. Food Saf. Guide 2017, 11, 151–152. [Google Scholar]
- Yang, J.; Yuan, L.Y.; Wang, J.; Wang, T.H.; Zhong, Y.F.; Luo, H.Y.; Wu, X.H.; Wu, Q. Analysis of active ingredients and taste characteristics of Yongchuan Xiuya. Sci. Technol. Food Ind. 2022, 43, 283–290. [Google Scholar]
- Wang, J.; Zhang, Y.; Chang, R.; Chen, S.M.; Yuan, L.Y.; Zhong, Y.F.; Wu, X.H.; Xu, Z. Quantitative prediction of moisture content in work in-process Yongchuan Xiuya tea based on different color models. Food Sci. 2022, 43, 308–314. [Google Scholar]
- Wan, X.C. Tea Biochemistry, 3rd ed.; China Agriculture Press: Beijing, China, 2003. [Google Scholar]
- GB/T 8313-2018; Determination of Total Polyphenols and Catechins Content in Tea. China Agriculture Press: Beijing, China, 2018.
- Fu, B.Q.; Xie, M.Y.; Nie, S.P.; Zhou, P.; Wang, Y.X. Determination of polysaccharide content in tea. Food Sci. 2001, 22, 69–73. [Google Scholar]
- Zhong, L. Physicochemical Analysis of Tea Quality; Shanghai Scientific and Technical Publishers: Shanghai, China, 1989. [Google Scholar]
- Ma, L.L.; Liu, Y.L.; Cao, D.; Gomg, Z.M.; Jin, X.F. Quality constituents of high amino acid content tea cultivars with various leaf colors. Turk. J. Agric. For. 2018, 42, 383–392. [Google Scholar] [CrossRef]
- Yan, Z.G.; Li, J.T.; Shen, Y.; Xiao, Z.Q.; Ai, Q.; Zhu, H.H. Damage identification method on shield tunnel based on PLSR and equivalent damage analysis. Tunn. Undergr. Space Technol. 2023, 137, 105127. [Google Scholar] [CrossRef]
- Liu, Y.D.; Sun, X.D.; Ouyang, A.G. Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN. LWT-Food Sci. Technol. 2010, 43, 602–607. [Google Scholar] [CrossRef]
- Xi, C.P.; Zhang, S.N.; Xiong, G.; Zhao, H.C.; Yang, Y.H. Two-dimensional multifractal cross-correlation analysis. Chaos Solitons Fractals 2017, 96, 9–69. [Google Scholar] [CrossRef]
- Shahdoosti, H.R.; Ghassemian, H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter. Inf. Fusion 2016, 27, 150–160. [Google Scholar] [CrossRef]
- Wolfgang, H.; Leopold, S. Applied Multivariate Statistical Analysis, 2nd ed.; Peking University Press: Beijing, China, 2014. [Google Scholar]
- Xia, T. Tea Processed, 3rd ed.; China Agriculture Press: Beijing, China, 2016. [Google Scholar]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef]
Index | Max | Min | Average | SD |
---|---|---|---|---|
Scores | 95 | 85.5 | 87.42 | 2.14 |
GA/mg/g | 1.86 | 0.64 | 0.72 | 0.29 |
CAF/% | 3.56 | 1.42 | 1.73 | 0.52 |
GC/mg/g | 0.34 | 0.19 | 0.25 | 0.04 |
EGC/% | 0.36 | 0.09 | 0.21 | 0.09 |
C/% | 0.10 | 0.05 | 0.06 | 0.03 |
EC/% | 0.12 | 0.04 | 0.07 | 0.02 |
EGCG/% | 5.25 | 3.12 | 3.74 | 0.65 |
GCG/mg/g | 0.26 | 0.14 | 0.19 | 0.08 |
ECG/% | 0.42 | 0.13 | 0.21 | 0.18 |
CG/% | 0.26 | 0.12 | 0.16 | 0.03 |
TC/% | 15.66 | 10.43 | 11.67 | 2.13 |
TP/% | 34.36 | 27.82 | 30.31 | 3.75 |
AA/% | 3.25 | 1.24 | 1.76 | 0.83 |
F/% | 2.83 | 1.75 | 2.44 | 0.35 |
WE/% | 43.52 | 38.85 | 40.53 | 3.66 |
TS/% | 5.12 | 2.70 | 3.73 | 2.52 |
Index | Eigenvectors | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | |
GA | 0.3092 | −0.1684 | 0.2143 | −0.1344 | 0.0987 |
CAF | 0.2700 | 0.0092 | 0.0920 | −0.1380 | 0.3366 |
GC | 0.2363 | −0.0505 | 0.2820 | −0.1056 | −0.0874 |
EGC | 0.0387 | 0.4508 | −0.0529 | 0.3573 | 0.7270 |
C | 0.1029 | 0.3163 | 0.0912 | −0.5467 | −0.1461 |
EC | 0.2227 | 0.3625 | −0.3097 | −0.2095 | 0.1042 |
EGCG | 0.5567 | −0.2150 | −0.0203 | 0.0991 | −0.0177 |
GCG | 0.2658 | −0.3010 | 0.0691 | 0.0890 | −0.1915 |
ECG | 0.3883 | 0.4862 | −0.1006 | −0.0258 | 0.0201 |
CG | 0.2863 | −0.1253 | −0.2899 | 0.0788 | −0.0880 |
TC | 0.4024 | 0.1010 | −0.1016 | −0.1390 | 0.0539 |
TP | 0.4612 | 0.3161 | 0.1659 | 0.2979 | 0.0307 |
AA | −0.0513 | 0.2736 | 0.6230 | 0.1107 | 0.0159 |
F | −0.1244 | 0.3345 | −0.3926 | 0.0217 | 0.1383 |
WE | 0.6299 | −0.0458 | 0.1857 | 0.3510 | −0.0671 |
TS | 0.1348 | 0.0780 | −0.2124 | 0.4611 | −0.4856 |
Eigenvalues | 13.14 | 2.30 | 0.20 | 0.13 | 0.06 |
Contribution rates/% | 82.13 | 14.36 | 1.24 | 0.83 | 0.38 |
Accumulated contribution rate of PC1-PC3/% | 97.73 | Accumulated contribution rate of PC4–PC5/% | 1.21 |
No. | PC1 | PC2 | PC3 | No. | PC1 | PC2 | PC3 |
---|---|---|---|---|---|---|---|
1 | 1.775 | −3.9385 | −0.8617 | 46 | −1.6018 | 1.0217 | 0.1246 |
2 | −0.5805 | −1.9684 | −1.0791 | 47 | −0.6848 | 1.0424 | 0.3529 |
3 | 3.036 | −3.6361 | −0.5471 | 48 | −0.3122 | 0.3511 | 0.5925 |
4 | 0.3416 | −1.9419 | 0.2925 | 49 | −2.6226 | 0.1124 | −0.5502 |
5 | 1.9355 | −3.7638 | −0.1638 | 50 | −1.804 | −0.7823 | −0.2341 |
6 | 0.7175 | −0.474 | 1.2196 | 51 | 0.1521 | 1.2412 | −0.3517 |
7 | −1.4983 | −2.1944 | 0.6161 | 52 | −0.9203 | 1.0401 | −1.6748 |
8 | −1.3936 | −0.7726 | −0.435 | 53 | 3.2586 | 2.1336 | −0.2424 |
9 | −0.4868 | −1.2719 | 0.4365 | 54 | −0.5582 | 0.9662 | −2.2403 |
10 | −1.6856 | −1.4367 | 0.7026 | 55 | 8.6524 | 0.2162 | 0.4486 |
11 | −1.1042 | −0.7088 | 1.1916 | 56 | −1.2403 | 0.8776 | 1.5701 |
12 | −1.3511 | −0.36 | 1.2587 | 57 | −1.7705 | 1.1294 | 2.3058 |
13 | 1.9368 | −0.5548 | 0.6023 | 58 | −1.8578 | −0.3888 | 0.337 |
14 | −2.7788 | −0.9177 | 1.675 | 59 | −1.2806 | 0.7363 | 0.1073 |
15 | −1.926 | −1.2402 | 1.3203 | 60 | −0.3502 | 2.5421 | −0.487 |
16 | −1.3358 | −2.9497 | −0.7029 | 61 | 1.4713 | 1.2027 | −0.8319 |
17 | −0.4809 | −1.9466 | −1.0661 | 62 | 1.679 | 0.921 | 0.355 |
18 | 2.3096 | −2.6868 | 0.8809 | 63 | −3.2776 | −0.2199 | −2.3119 |
19 | −0.0364 | −1.2208 | 0.2805 | 64 | 3.6238 | −1.0214 | 0.7686 |
20 | −1.3692 | −0.9329 | 0.105 | 65 | −0.856 | 1.0487 | −0.1566 |
21 | 6.4563 | 2.4076 | 1.0552 | 66 | 3.4822 | 0.6847 | −1.016 |
22 | −1.1998 | −0.0999 | 1.1245 | 67 | −1.9691 | 1.267 | −1.9004 |
23 | 1.3245 | −0.6896 | 1.0234 | 68 | −2.618 | 0.1019 | 1.0843 |
24 | 1.536 | −0.5213 | 2.5202 | 69 | −2.7939 | −0.4014 | 1.3374 |
25 | −0.9508 | 2.0737 | 1.536 | 70 | −1.6442 | −0.4213 | −0.8723 |
26 | −3.5698 | −1.1139 | −1.972 | 71 | 3.8298 | 1.6497 | −1.9752 |
27 | 0.1921 | 1.7773 | 1.0972 | 72 | 1.4916 | 1.0777 | 1.1331 |
28 | 5.9119 | −2.8599 | −2.5312 | 73 | −0.7033 | 1.212 | −0.0083 |
29 | −1.5615 | −0.4516 | −1.8843 | 74 | −0.8629 | −0.8127 | 0.7028 |
30 | −1.4591 | 0.0522 | −0.0647 | 75 | −0.5721 | −1.0933 | 1.4466 |
31 | −2.403 | 0.2643 | 0.577 | 76 | −0.606 | −0.2355 | −0.2221 |
32 | 1.6636 | 2.1569 | 0.1681 | 77 | −3.0995 | 0.1555 | −1.2727 |
33 | −0.8841 | 3.1177 | −0.9166 | 78 | −0.6562 | 0.8468 | −1.3858 |
34 | −3.0552 | 0.4802 | 1.698 | 79 | −0.0721 | 1.5898 | 1.2834 |
35 | 0.9055 | 0.7643 | −1.6245 | 80 | 0.6024 | 0.5936 | 0.8527 |
36 | 0.9089 | 0.6691 | 0.3768 | 81 | 0.4541 | 1.4327 | −0.3668 |
37 | 3.1934 | 0.0564 | −0.1861 | 82 | −0.4966 | 0.4367 | 0.3332 |
38 | 1.8949 | −0.3699 | 1.1487 | 83 | −1.7236 | 1.7501 | 0.1776 |
39 | 0.4785 | 0.2402 | −0.0766 | 84 | −0.8348 | 1.1868 | 0.4829 |
40 | −2.6544 | 0.4731 | −2.6383 | 85 | −0.3491 | 0.3818 | 0.7866 |
41 | 4.5366 | 0.1026 | 0.4665 | 86 | −2.8626 | 0.0101 | −0.509 |
42 | −1.7693 | 0.3486 | 0.2686 | 87 | −2.504 | −0.6591 | −0.1861 |
43 | 3.9881 | 1.047 | −1.3119 | 88 | 0.0562 | 1.812 | −0.4681 |
44 | −0.8125 | 0.6777 | −1.6815 | 89 | −1.2035 | 1.1401 | −2.758 |
45 | −0.9541 | 0.2529 | −0.2702 | 90 | 3.6786 | 2.3452 | −0.1724 |
Indexes | S | GA | CAF | GC | EGC | C | EC | EGCG | GCG | ECG | CG | TC | TP | AA | F | WE | TS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | 1.00 | ||||||||||||||||
GA | −0.20 | 1.00 | |||||||||||||||
CAF | −0.19 | 0.56 ** | 1.00 | ||||||||||||||
GC | 0.03 | 0.40 * | 0.34 ** | 1.00 | |||||||||||||
EGC | 0.51 ** | 0.05 | 0.04 | 0.02 | 1.00 | ||||||||||||
C | 0.02 | 0.18 | 0.09 | 0.15 | −0.16 | 1.00 | |||||||||||
EC | −0.11 | 0.13 | 0.32 ** | 0.23 * | −0.01 | 0.34 ** | 1.00 | ||||||||||
EGCG | 0.57 ** | 0.61 ** | 0.46 ** | 0.35 ** | 0.06 | −0.08 | 0.29 ** | 1.00 | |||||||||
GCG | −0.10 | 0.45 * | 0.30 ** | 0.37 ** | 0.02 | −0.07 | 0.06 | 0.70 ** | 1.00 | ||||||||
ECG | 0.53 ** | 0.57 ** | 0.51 ** | 0.37 ** | 0.05 | 0.22 | 0.51 ** | 0.73 ** | 0.45 * | 1.00 | |||||||
CG | −0.11 | 0.40 ** | 0.38 ** | 0.28 ** | 0.14 | 0.09 | 0.24 * | 0.51 ** | 0.41 * | 0.65 ** | 1.00 | ||||||
TC | 0.63 ** | 0.58 ** | 0.51 ** | 0.44 ** | 0.12 | 0.42 ** | 0.67 ** | 0.75 ** | 0.49 * | 0.93 ** | 0.61 ** | 1.00 | |||||
TP | 0.56 ** | 0.41 ** | 0.38 ** | 0.27 ** | 0.08 | 0.19 | 0.32 ** | 0.37 ** | 0.19 | 0.54 ** | 0.22 * | 0.52 ** | 1.00 | ||||
AA | 0.70 ** | −0.06 | −0.03 | 0.06 | 0.01 | 0.17 | −0.10 | −0.24 * | −0.14 | −0.12 | −0.25 * | −0.11 | 0.16 | 1.00 | |||
F | 0.17 | 0.38 ** | −0.08 | −0.30 ** | −0.07 | 0.04 | 0.26 * | −0.41 ** | −0.35 * | −0.20 | −0.16 | −0.18 | 0.04 | −0.03 | 1.00 | ||
WE | 0.54 ** | 0.01 | 0.13 | 0.13 | −0.05 | 0.09 | 0.32 ** | 0.17 | 0.01 | 0.28 * | 0.04 | 0.28 * | 0.58 ** | 0.31 ** | 0.19 | 1.00 | |
TS | −0.03 | 0.09 | 0.01 | 0.11 | 0.03 | 0.02 | 0.15 | 0.19 | 0.16 | 0.24 * | 0.35 ** | 0.23 * | 0.32 ** | 0.06 | −0.01 | 0.16 | 1.00 |
Principal Components (PC) | PC1 | PC(1–2) | PC(1–3) | PC(1–4) | PC(1–5) |
---|---|---|---|---|---|
Cumulative contribution rate/% | 80.35 | 92.55 | 96.25 | 98.14 | 99.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Y.; Wang, J.; Wu, X.; Chang, R.; Wang, Y.; Luo, H.; Zhong, Y.; Wu, Q.; Chen, Z.; Deng, M. The Analysis and Rapid Non-Destructive Evaluation of Yongchuan Xiuya Quality Based on NIRS Combined with Machine Learning Methods. Processes 2023, 11, 2809. https://doi.org/10.3390/pr11092809
Zang Y, Wang J, Wu X, Chang R, Wang Y, Luo H, Zhong Y, Wu Q, Chen Z, Deng M. The Analysis and Rapid Non-Destructive Evaluation of Yongchuan Xiuya Quality Based on NIRS Combined with Machine Learning Methods. Processes. 2023; 11(9):2809. https://doi.org/10.3390/pr11092809
Chicago/Turabian StyleZang, Ying, Jie Wang, Xiuhong Wu, Rui Chang, Yi Wang, Hongyu Luo, Yingfu Zhong, Quan Wu, Zhengming Chen, and Min Deng. 2023. "The Analysis and Rapid Non-Destructive Evaluation of Yongchuan Xiuya Quality Based on NIRS Combined with Machine Learning Methods" Processes 11, no. 9: 2809. https://doi.org/10.3390/pr11092809
APA StyleZang, Y., Wang, J., Wu, X., Chang, R., Wang, Y., Luo, H., Zhong, Y., Wu, Q., Chen, Z., & Deng, M. (2023). The Analysis and Rapid Non-Destructive Evaluation of Yongchuan Xiuya Quality Based on NIRS Combined with Machine Learning Methods. Processes, 11(9), 2809. https://doi.org/10.3390/pr11092809