A Human-Centric Design Method for Industrial Centrifugal Pump Based on Digital Twin
Abstract
:1. Introduction
2. Literature Review
2.1. Design of Centrifugal Pump
2.2. Digital Design
2.3. Design Patterns Driven by DT
2.4. Research Gaps
3. The Design Mode Based on DT
3.1. Traditional Design Framework for Centrifugal Pump Overcurrent Components
3.2. Human-Centric Design Pattern Driven by DT
4. DT-Driven Linked Design Process
4.1. The Idea of Linked Generation for Industrial Centrifugal Pumps Driven by DT
4.2. Interactive Rapid Generation Method for Key Components
Algorithm 1: Impeller generation algorithm |
Input: Q, H, n Output: 3D models and 2D engineering drawings Begin
|
4.3. Collaborative Generation Method for Related Components
Algorithm 2: Volute generation algorithm |
Input: Q, H, n, , L, r Output: Begin
|
5. Case Study
5.1. Verification Environment and Product Requirements
5.2. Experimental Verification
5.3. Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name | Function | Implementation Path |
---|---|---|
Bezier | Draw the n-order Bézier curve path. | Invoke the Mypoint function to obtain the three essential elements of the Bézier point. |
ExcelHelper | Tabular data for calculating blade axial projection diagram | Invoke the PointTable function to export table data of various flow paths in the impeller projection diagram. |
GlobalParameter | Storage location of the encapsulated global variables. | |
CylindricalPoint | Polar coordinate transformation. | Obtain the set of points with three essential elements and convert it into a set of polar coordinate points. |
Matrix | Matrix Operations | Encapsulates many calculation methods for matrices. |
Lagrange | Lagrangian interpolation | Encapsulates the Lagrange interpolation method, which can be invoked to fit empirical formulas and predict values for design points. |
MyPoint | Encapsulate the coordinates, slope, and curvature of all points on the Bézier curve. | Encapsulates the three essential elements of a Bézier curve into a container. |
PointTable | Calculate the method for various edge sets | Invoke the CylindricalPoint function and its own calculation methods to compute the sets of points for the front streamline, rear streamline, and so on. |
AxialView | Axial view diagram module | Invoke the “BladeDesign”, “XY_Bezier” modules and “CylindricalPoint” polar coordinate transformation calculation module to plot the axis surface diagram point set and display it. |
BladeDesign | blade module | The system will invoke the “BladeDesign”, “XY_Bezier” modules, and the “CylindricalPoint” polar coordinate transformation calculation module. |
BladeThickening | Blade thickening module | Invoke the “BladeThickening” streamline design module, “XY_Thickening” axis surface diagram blade graphic module, DevExpress controls, AnyCad controls, and “CylindricalPoint” polar coordinate transformation calculation module; input the design parameters to obtain the blade design shape. |
Chamfer | Blade chamfering module | nvoke the “Chamfer” blade chamfering module, “CylindricalPoint” polar coordinate transformation calculation module, and “MyPoint” Bézier point encapsulation module; use design parameters to compute the chamfer shape of the blade and display it. |
DataOutput | Blade data output module | Invoke the “AxialView”, “BladeDesign”, “BladeThickening”, “Chamfer”, “DataOutput”, “GlobalSetup”, “Home”, and other modules to automatically operate Solidworks and draw 3D models and 2D engineering diagrams. |
GlobalSetup | global variable module | Store global variables for convenient invocation. |
LiuxianDesign | Streamline design module | Invoke the “LiuxianDesign” streamline design module, “XY_LiuXian” expanded view design module, “XY_Move” point movement module, “CylindricalPoint” polar coordinate transformation calculation module, and “MyPoint” Bézier point encapsulation module; calculate the sets of points of various streamlines of the blade and draw them for display. |
ParameterSetting | Blade parameter setting module | Invoke the “ParameterSetting” impeller parameter setting module and “CylindricalPoint” polar coordinate transformation calculation module; calculate the blade parameters based on the global module parameters |
Parameter Setting_Volute | Volute parameter setting module | Invoke the “ParameterSetting_Volute” design module and “Lagrange” calculation module to compute |
SectionDesign | Section design module | Invoke the “GlobalParameter” global information module, “SectionDesign” section design module, and other modules to calculate the structural parameters of each section height under different section shapes, as well as the set of spatial points. |
TubeDesign | Diffusion tube design module | Invoke the “TubeDesign” diffuser tube design module and “CylindricalPoint” polar coordinate transformation module, among others, to calculate the diffuser tube structural parameters related to , L, and A. |
DataOutput_Volute | Volute data output module | Invoke the encapsulated “DataOutput_Volute” volute data output, “ParameterSetting_Volute” volute parameter setting, and other modules; connect to Solidworks, call up the volute-related data sets, and automatically generate 3D models and 2D engineering diagrams of the volute. |
XY_Bezier | Bezier curve point set calculation module | Invoke functions such as Drawing.Drawing2D, Windows.Forms, and others to calculate control points for a five-point quartic Bézier curve. |
XY_Controls | Axis plot point set calculation function | Invoke functions like Drawing.Imaging, Drawing.Drawing2D, and others to calculate the coordinate point sets of the front and rear streamlines in the axial view diagram. |
XY_LiuXian | Coordinate calculation function of streamline points | Invoke functions such as LiuXian_control, PointDrawing.Drawing2D, and others to calculate the coordinate point sets of the streamlines in each channel of the axial view diagram. |
Name | Function | Specific Formula |
---|---|---|
Specific speed | The specific speed, represented by , is a comprehensive parameter that characterizes the relationship between flow rate Q, head H, and rotational speed n. It serves as a metric in the pump design process. It is encapsulated in the “Parameter Setting” module mentioned in the paper. | |
Impeller outlet diameter | 1. The flow rate is determined by and is directly proportional to the flow rate. 2. The head is influenced by the pump head and is also directly proportional to it. 3. The efficiency is affected by the correct , which helps the pump operate at the Best Efficiency Point (BEP). It is encapsulated in the “Parameter Setting” module mentioned in the paper. | |
Impeller Outlet Width | 1. The role of b2 is directly related to the flow rate of the pump. 2. It controls the velocity triangle, affecting the absolute velocity, relative velocity, and flow angle. 3. It influences the head and pressure. 4. An appropriate value of b2 can reduce energy losses in the pump and improve its efficiency. 5. A suitable b2 value ensures that the pump body has sufficient structural strength. | |
Impeller inlet diameter | 1. Controlling the inlet velocity: A smaller inlet diameter results in a higher velocity of the fluid entering the impeller. 2. Determining the fluid flow rate: A larger inlet diameter allows the pump to handle a greater volume of fluid. 3. Influencing the pump head: The inlet diameter is one of the factors that affect how high the pump can lift the fluid. 4. Affecting efficiency: An appropriate inlet diameter helps to reduce energy losses and improve pump efficiency. 5. Reducing losses: The correct inlet diameter can minimize energy losses when the fluid enters the impeller. | |
Impeller inlet Width | 1. Flow Rate: The larger the , the more fluid can pass through. 2. Inlet Velocity Distribution: An appropriate helps achieve a more uniform velocity distribution, reducing losses. 3. Prevention of Separation: An overly small may cause fluid separation at the inlet, affecting efficiency and stability. 4. Efficiency Impact: A reasonable contributes to improving the overall operational efficiency of the pump. |
References
- Liu, H.; Wu, Z.; Yuan, S.; Wang, Y.; Dong, L. Design and Implementation of a Three-Dimensional CAD Graphics Support Platform for Pumps Based on Open CASCADE. Processes 2023, 11, 2315. [Google Scholar] [CrossRef]
- Wang, W.; Osman, M.K.; Pei, J.; Gan, X.; Yin, T. Artificial Neural Networks Approach for a Multi-Objective Cavitation Optimization Design in a Double-Suction Centrifugal Pump. Processes 2019, 7, 246. [Google Scholar] [CrossRef]
- Li, H.; Lin, H.; Huang, W.; Li, J.; Zeng, M.; Ma, J.; Hu, X. A New Prediction Method for the Complete Characteristic Curves of Centrifugal Pumps. Energies 2021, 14, 8580. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.; He, W.; He, Z. Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance. Chin. J. Mech. Eng. 2012, 25, 1184–1189. [Google Scholar] [CrossRef]
- Luo, R.; Sheng, B.; Huang, Y.; Jian, Y.; Song, K.; Lu, Y.; Chen, G.; Jiang, F. Key technologies and development trends of digital twin-based production system simulation software. Comput. Integr. Manuf. Syst. 2023, 29, 1965. [Google Scholar]
- Wang, X.; Wang, Y.; Tao, F.; Liu, A. New Paradigm of Data-Driven Smart Customisation through Digital Twin. J. Manuf. Syst. 2021, 58, 270–280. [Google Scholar] [CrossRef]
- Luo, R.; Sheng, B.; Lu, Y.; Huang, Y.; Fu, G.; Yin, X. Digital Twin Model Quality Optimization and Control Methods Based on Workflow Management. Appl. Sci. 2023, 13, 2884. [Google Scholar] [CrossRef]
- Liu, S.; Lu, Y.; Shen, X.; Bao, J. A digital thread-driven distributed collaboration mechanism between digital twin manufacturing units. J. Manuf. Syst. 2023, 68, 145–159. [Google Scholar] [CrossRef]
- Leng, J.; Liu, Q.; Ye, S.; Jing, J.; Wang, Y.; Zhang, C.; Zhang, D.; Chen, X. Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Robot. Comput. Integr. Manuf. 2020, 63, 101895. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int. J. Prod. Res. 2020, 58, 1034–1051. [Google Scholar] [CrossRef]
- Jiang, Q.; Heng, Y.; Liu, X.; Zhang, W.; Bois, G.; Si, Q. A Review of Design Considerations of Centrifugal Pump Capability for Handling Inlet Gas-Liquid Two-Phase Flows. Energies 2019, 12, 1078. [Google Scholar] [CrossRef]
- Lin, C.-M.; Lin, S.-F. Statistical Features and Expert Knowledge for Monitoring Operating Efficiency and Conditions of Wastewater Treatment Pumps. Materials 2019, 12, 4101. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.F.B.F.; Bin Azmir, N.A. Study on Behavior of Water Treatment Pump Before and After Modification using Finite Element Modal Analysis. In Proceedings of the 2019 10th International Conference on Mechanical and Manufacturing Engineering (ICME 2019), Ayer Keroh, Malaysia, 29–30 August 2019. [Google Scholar]
- Wu, T.; Wu, D.; Ren, Y.; Song, Y.; Gu, Y.; Mou, J. Multi-objective optimization on diffuser of multistage centrifugal pump base on ANN-GA. Struct. Multidiscip. Optim. 2022, 65, 182. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, L.; Mou, J.; Shi, Z.; Yan, M.; Wu, D. Influence of circular non-smooth structure on cavitation damage characteristics of centrifugal pump. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 155. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, H.; Wang, Y.; Mao, Y.; Zhou, R.; Gu, J. Experimental study on the effect of gas volume fraction on the cavitation performance of a low-specific-speed centrifugal pump. Water 2022, 14, 798. [Google Scholar] [CrossRef]
- Yuan, Y.; Jin, R.; Tang, L.; Lin, Y. Optimization design for the centrifugal pump under non-uniform elbow inflow based on orthogonal test and GA_PSO. Processes 2022, 10, 1254. [Google Scholar] [CrossRef]
- Song, P.F.; Zhang, Y.X.; Xu, C.; Zhou, X.; Zhang, J.Y. Numerical studies in a centrifugal pump with the improved blade considering cavitation. In Proceedings of the International Symposium on Cavitation and Multiphase Flow (ISCM 2014), Beijing, China, 18–21 October 2014. [Google Scholar]
- Wang, W.; Li, Y.; Osman, M.K.; Yuan, S.; Zhang, B.; Liu, J. Multi-condition optimization of cavitation performance on a double-suction centrifugal pump based on ANN and NSGA-II. Processes 2020, 8, 1124. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Mou, J.G.; Dai, D.S.; Zheng, S.H.; Wu, D.H.; Jiang, L.F.; Shi, H.Y.; Wang, E. Effect of pumping chamber on performance of non-overload centrifugal pump. J. Cent. South Univ. 2015, 22, 2989–2997. [Google Scholar] [CrossRef]
- Khoeini, D.; Shirani, E.; Joghataei, M. Improvement of Centrifugal Pump Performance by Using Different Impeller Diffuser Angles with and without Vanes. J. Mech. 2019, 35, 577–589. [Google Scholar] [CrossRef]
- Lin, P.; Li, Y.; Xu, W.; Chen, H.; Zhu, Z. Numerical Study on the Influence of Inlet Guide Vanes on the Internal Flow Characteristics of Centrifugal Pump. Processes 2020, 8, 122. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, P.; Bao, J. Digital Twin-based manufacturing system: A survey based on a novel reference model. J. Intell. Manuf. 2023, 1–30. [Google Scholar] [CrossRef]
- Lan, H. Web-based rapid prototyping and manufacturing systems: A review. Comput. Ind. 2009, 60, 643–656. [Google Scholar] [CrossRef]
- Boncinelli, P.; Biagi, R.; Focacci, A.; Corradini, U.; Arnone, A.; Bernacca, M.; Borghetti, M. Bowl-type diffusers for low specific-speed pumps: An industrial application. J. Turbomach. Trans. Asme 2008, 130, 031013. [Google Scholar] [CrossRef]
- Li, W.; Shi, J. Research on Digital Design Technology of Some Product. In Proceedings of the 2013 International Conference on Mechanical and Automation Engineering (MAEE), Jiujiang, China, 21–23 July 2013. [Google Scholar]
- Lin, L.; Kollipara, P.S.; Zheng, Y. Digital manufacturing of advanced materials: Challenges and perspective. Mater. Today 2019, 28, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Xiao, C. Data-driven main color map feature learning, design and simulation for smart ethnic cloth. Future Gener. Comput. Syst. Int. J. Escience 2019, 97, 153–164. [Google Scholar] [CrossRef]
- Zhang, A. Graphical design based on digital twin and interaction generation. Comput. Electr. Eng. 2022, 103, 108367. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, P.; Xia, L.; Bao, J. A dynamic updating method of digital twin knowledge model based on fused memorizing-forgetting model. Adv. Eng. Inform. 2023, 57, 102115. [Google Scholar] [CrossRef]
- Emami, S.A.; Emami, M.H. Design and Implementation of an Online Precise Monitoring and Performance Analysis System for Centrifugal Pumps. IEEE Trans. Ind. Electron. 2018, 65, 1636–1644. [Google Scholar] [CrossRef]
- Tao, F.; Zhan, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Leng, J.; Chen, X. Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int. J. Prod. Res. 2019, 57, 3903–3919. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Chen, X.; Zhang, D.; Leng, J. A Digital Twin-Based Approach for Designing and Multi-Objective Optimization of Hollow Glass Production Line. IEEE Access 2017, 5, 26901–26911. [Google Scholar] [CrossRef]
- Arrichiello, V.; Gualeni, P. Systems engineering and digital twin: A vision for the future of cruise ships design, production and operations. Int. J. Interact. Des. Manuf. (IJIDeM) 2020, 14, 115–122. [Google Scholar] [CrossRef]
- Lo, C.K.; Chen, C.H.; Zhong, R.Y. A review of digital twin in product design and development. Adv. Eng. Inform. 2021, 48, 101297. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. Njas-Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production engineering. Cirp Ann. Manuf. Technol. 2017, 66, 141–144. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 2017, 5, 20418–20427. [Google Scholar] [CrossRef]
Software System | Configuration Name | Hardware Items | Configuration Name |
---|---|---|---|
Operating system | Win7/Win10 (64 bit) | CPU | Intel®i7-7700K4.2 GHz |
CAD platform | SolidWorks 2020 | GPU | GeForceGTX1080Ti |
Anycad plug-in | Anycad 2020 | Memory | 16 GB or above |
Office Software | Microsoft Office 2013 | Harddisk | 1 T or above |
Database | SQL Server 2008 |
Lift H (m) | Efficiency η (%) | |||
---|---|---|---|---|
0.0833 | 84 | 1480 | 65 | 2.5 |
Efficiency η (%) | ||||
---|---|---|---|---|
0.077 | 80 | 1490 | 68 | 2 |
Rotating Speed n (r/min) | Efficiency η (%) | (m) | |
---|---|---|---|
85 | 1480 | 70 | 1.68 |
Steps and Time/min | Manual Design Time | Software Design Time |
---|---|---|
Determine the pump structure and type of prime mover, and calculate the basic parameters of the pump | 10 min | 1 min |
Calculate the main parameters of the impeller. | 20 min | 1 min |
Calculate the coordinates of the point set in the axial projection diagram. | 60 min | 2 min |
Calculate the coordinates of the streamline point set on the axial surface. | 30 min | 1 min |
Calculate the number of blades. | 15 min | 1 min |
Calculate the coordinates of the blade thickening point set. | 30 min | 1 min |
Calculate the inlet and outlet placement angles and fillet radius of the designed blade. | 30 min | 1 min |
Draw the two-dimensional wooden model diagram and the axial projection diagram featuring axial streamlines and thickening lines. | 180–300 min | 2 min |
Create the initial version of the three-dimensional hydrodynamic model of the impeller. | 240–360 min | 2 min |
Total time | 595 min–835 min | 12 min |
Steps and Time/min | Manual Design Time | Software Design Time |
---|---|---|
Calculate the main parameters of the volute | 5 min | 1 min |
Calculate the main parameters of the vortex chamber | 20 min | 1 min |
Calculate placement angle and helix angle | 20 min | 1 min |
Section shape selection and parameter calculation | 60 min | 1 min |
Design and calculation of diffusion segment point and line coordinate sets | 120 min | 1 min |
Draw two-dimensional engineering drawings and partial enlargements of the volute | 120–180 min | 2 min |
Draw the 3D model of the volute | 180–240 min | 2 min |
total time | 525–645 min | 9 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Sheng, B.; Zhu, J.; Chen, G.; Zhang, T.; Luo, R. A Human-Centric Design Method for Industrial Centrifugal Pump Based on Digital Twin. Processes 2024, 12, 42. https://doi.org/10.3390/pr12010042
Shi Y, Sheng B, Zhu J, Chen G, Zhang T, Luo R. A Human-Centric Design Method for Industrial Centrifugal Pump Based on Digital Twin. Processes. 2024; 12(1):42. https://doi.org/10.3390/pr12010042
Chicago/Turabian StyleShi, Yue, Buyun Sheng, Jiaxing Zhu, Geng Chen, Tianao Zhang, and Ruiping Luo. 2024. "A Human-Centric Design Method for Industrial Centrifugal Pump Based on Digital Twin" Processes 12, no. 1: 42. https://doi.org/10.3390/pr12010042
APA StyleShi, Y., Sheng, B., Zhu, J., Chen, G., Zhang, T., & Luo, R. (2024). A Human-Centric Design Method for Industrial Centrifugal Pump Based on Digital Twin. Processes, 12(1), 42. https://doi.org/10.3390/pr12010042