A Comparative Study of Drying Technologies for Apple and Ginger Pomace: Kinetic Modeling and Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Nutritional Composition Analysis of the Apple and Ginger Pomace
2.2.1. Moisture Content
2.2.2. Ash
2.2.3. Fat
2.2.4. Protein
2.2.5. Total Fiber
2.2.6. Carbohydrates
2.3. Hot-Air Drying (HAD)
2.4. Microwave Drying (MWD)
2.5. Moisture Content Determination
2.6. Water Activity Determination
2.7. Mathematical Models Used
2.8. The Arrhenius Behaviour
2.9. Specific Energy Consumption Determination
2.10. Color Analysis
2.11. Total Phenolic Content (TPC) and Antioxidant Activity (AA) Determinations
2.11.1. The ABTS Method
2.11.2. The DPPH Method
2.11.3. The ORAC Method
2.12. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of the Apple and Ginger Pomace
3.2. Hot-Air Drying (HAD) Modelling
3.3. Microwave Drying (MWD) Modeling
3.4. Drying Time and Specific Energy Consumption
3.5. Water Activity (aw)
3.6. Color
3.7. Total Phenolic Content (TPC) and Antioxidant Activity (AA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scherhaufer, S.; Moates, G.; Hartikainen, H.; Waldron, K.; Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 2018, 77, 98–113. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Gumul, D.; Kruczek, M.; Ivanišová, E.; Słupski, J.; Kowalski, S. Apple pomace as an ingredient enriching wheat pasta with health-promoting compounds. Foods 2023, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Issar, K.; Sharma, P.C.; Gupta, A. Utilization of apple pomace in the preparation of fiber-enriched acidophilus yoghurt. J. Food Proc. Preserv. 2017, 41, e13098. [Google Scholar] [CrossRef]
- Jovanović, M.; Petrović, M.; Miočinović, J.; Zlatanović, S.; Laličić Petronijević, J.; Mitić-Ćulafić, D.; Gorjanović, S. Bioactivity and sensory properties of probiotic yogurt fortified with apple pomace flour. Foods 2020, 9, 763. [Google Scholar] [CrossRef]
- Wang, C.; Song, R.; Wei, S.; Wang, W.; Li, F.; Tang, X.; Li, N. Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties. LWT 2020, 125, 109220. [Google Scholar] [CrossRef]
- Gulzar, R.; Afzaal, M.; Saeed, F.; Samar, N.; Shahbaz, A.; Ateeq, H.; Farooq, M.U.; Akram, N.; Asghar, A.; Rasheed, A.; et al. Bio valorization and industrial applications of ginger waste: A review. Int. J. Food Prop. 2023, 26, 2772–2780. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Kowalski, S.J.; Szadzińska, J.J.C.E. Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chem. Eng. Proc. 2014, 82, 65–70. [Google Scholar] [CrossRef]
- Feng, H.; Yin, Y.; Tang, J. Microwave drying of food and agricultural materials: Basics and heat and mass transfer modelling. Food Eng. Rev. 2012, 4, 89–106. [Google Scholar] [CrossRef]
- Lewis, W.K. The Rate of Drying of Solid Materials. J. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Henderson, S.M.; Pabis, S. Grain drying theory. II. Temperature effects on drying coefficients. J. Agric. Eng. Res. 1961, 6, 169–174. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; p. 414. [Google Scholar]
- Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- A.O.A.C. Official Methods of Analysis, 18th ed.; Method A.O.A.C. 930.15; Association of the Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Slack, P.T. Analytical Methods Manual, 3rd ed.; Leatherhead Food R.A.: London, UK, 1997; Issue 2. [Google Scholar]
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- A.O.A.C. Official Methods of Analysis; Method A.O.A.C. 991.43; Association of the Official Analytical Chemists: Arlington, VA, USA, 2003. [Google Scholar]
- A.O.A.C. Official Methods of Analysis; Method A.O.A.C. 985.29; Association of the Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Akgun, N.A.; Doymaz, I. Modeling of olive cake thin-layer drying process. J. Food Eng. 2005, 68, 455–461. [Google Scholar] [CrossRef]
- Popescu, M.; Iancu, P.; Plesu, V.; Bildea, C.S.; Manolache, F.A. Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality. Foods 2023, 12, 3883. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Khoshtagaza, M.H. Evaluation of energy consumption in different drying methods. Energy Convers. Manag. 2011, 52, 1192–1199. [Google Scholar] [CrossRef]
- Commission Internationale de L’Eclairage, C.I.E. Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms; Supplement No. 2 to C.I.E. Publication No. 15, (E.-1.3 1) 1971; C.I.E.: Paris, France, 1978; TC 1. [Google Scholar]
- Martins, V.F.R.; Ribeiro, T.B.; Lopes, A.I.; Pintado, M.E.; Morais, R.M.S.C.; Morais, A.M.B. Comparison among Different Green Extraction Methods of Polyphenolic Compounds from Exhausted Olive Oil Pomace and the Bioactivity of the Extracts. Molecules 2024, 29, 1935. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Krokida, M.K.; Foundoukidis, E.; Maroulis, Z. Drying constant: Literature data compilation for foodstuffs. J. Food Eng. 2004, 61, 321–330. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, T.; Ma, J.; Song, Q.; Wei, Q.; Sun, W. Application of two-stage variable temperature drying in hot air-drying of paddy rice. Foods 2022, 11, 888. [Google Scholar] [CrossRef]
- Mujumdar, A.S. Handbook of Industrial Drying, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Mayor, L.; Sereno, A.M. Modeling shrinkage during convective drying of food materials: A review. J. Food Eng. 2004, 61, 373–386. [Google Scholar] [CrossRef]
- Chua, K.J.; Hawlader, M.N.A.; Chou, S.K.; Ho, J.C. On the study of time-varying temperature drying—Effect on drying kinetics and product quality. Dry. Technol. 2002, 20, 1559–1577. [Google Scholar] [CrossRef]
- Tulej, W.; Głowacki, S. Modeling of the Drying Process of Apple Pomace. Appl. Sci. 2022, 12, 1434. [Google Scholar] [CrossRef]
- Kara, C.; Doymaz, İ. Effective moisture diffusivity determination and mathematical modelling of drying curves of apple pomace. Heat Mass Transf. 2015, 51, 983–989. [Google Scholar] [CrossRef]
- Majumder, P.; Sinha, A.; Mishra, L.; Gupta, R. Prediction of moisture ratios (MRs) during fluidized bed drying of ginger (Zingiber officinale) cubes by using mathematical modeling and experimental validation. In Advances in Mechanical Engineering, Proceedings of the ICRIDME 2018, Shillong, India, 8–10 November 2018; Springer: Singapore, 2020; pp. 729–740. [Google Scholar]
- Wang, Z.; Sun, J.; Liao, X.; Chen, F.; Zhao, G.; Wu, J.; Hu, X. Mathematical modelling on hot air drying of thin layer apple pomace. Food Res. Int. 2007, 40, 39–46. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Toraman, S. Estimation of the moisture diffusivity and activation energy in thin layer drying of ginger slices. Int. J. Nutr. Food Eng. 2013, 7, 415–418. [Google Scholar]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: Drying kinetics, modeling, temperature profile and energy aspect. Heat Mass Transf. 2018, 54, 425–436. [Google Scholar] [CrossRef]
- Hazervazifeh, A.; Nikbakht, A.M.; Nazari, S. Industrial Microwave Dryer an Effective Design to Reduce Non-Uniform Heating. Eng. Agric. Environ. Food 2021, 14, 110–121. [Google Scholar]
- Barbosa-Cánovas, G.V.; Fontana, A.J., Jr.; Schmidt, S.J.; Labuza, T.P. Water Activity in Foods: Fundamentals and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA; Institute of Food Technologists: Chicago, IL, USA, 2020; p. 640. [Google Scholar]
- Rana, S.; Gupta, S.; Rana, A.; Bhushan, S. Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Sci. Hum. Wellness 2015, 4, 180–187. [Google Scholar] [CrossRef]
- Vlad, C.C.; Păcularu-Burada, B.; Vasile, A.M.; Milea, Ș.A.; Bahrim, G.E.; Râpeanu, G.; Stănciuc, N. Upgrading the functional potential of apple pomace in value-added ingredients with probiotics. Antioxidants 2022, 11, 2028. [Google Scholar] [CrossRef]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crops Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Bhat, I.M.; Wani, S.M.; Mir, S.A.; Naseem, Z. Effect of microwave-assisted vacuum and hot air oven drying methods on quality characteristics of apple pomace powder. Food Prod. Process. Nutr. 2023, 5, 26. [Google Scholar] [CrossRef]
- Chen, G.T.; Yuan, B.; Wang, H.X.; Qi, G.H.; Cheng, S.J. Characterization and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes. Int. J. Biol. Macromol. 2019, 139, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Gonelimali, F.D.; Szabó-Nótin, B.; Máté, M. Optimal drying conditions for valorization of industrial apple pomace: Potential source of food bioactive compounds. Prog. Agric. Eng. Sci. 2021, 17, 69–75. [Google Scholar] [CrossRef]
Experiment | Air Temperature (°C) | Model | k (min−1) | a | R² | (×10−4) | RMSE (×10−2) |
---|---|---|---|---|---|---|---|
HAD_45 | Lewis | 0.0184 ± 0.0009 | - | 0.985 ± 0.003 | 56.95 ± 10.65 | 7.34 ± 0.65 | |
45 | Henderson and Pabis | 0.0210 ± 0.0005 | 1.57 ± 0.08 | 0.982 ± 0.008 | 134.5 ± 50.07 | 10.9 ± 2.20 | |
HAD_62 | Lewis | 0.0269 ± 0.0043 | - | 0.987 ± 0.015 | 46.52 ± 51.52 | 5.89 ± 4.00 | |
62 | Henderson and Pabis | 0.0305 ± 0.0076 | 1.39 ± 0.35 | 0.977 ± 0.024 | 50.74 ± 61.14 | 5.69 ± 4.49 | |
HAD_70 | Lewis | 0.0330 ± 0.0001 | - | 0.989 ± 0.005 | 31.29 ± 16.14 | 5.26 ± 1.41 | |
70 | Henderson and Pabis | 0.0373 ± 0.0013 | 1.44 ± 0.14 | 0.980 ± 0.008 | 64.42 ± 10.27 | 7.32 ± 0.59 | |
HAD_62_45 | Lewis | 0.0151 ± 0.0024 | - | 0.998 ± 0.001 | 3.91 ± 0.06 | 1.92 ± 0.013 | |
Stepwise 62 and 45 | Henderson and Pabis | 0.0153 ± 0.0032 | 1.04 ± 0.18 | 0.996 ± 0.002 | 7.87 ± 7.51 | 2.47 ± 1.35 | |
HAD_45_62 | Lewis | 0.0246 ± 0.0011 | - | 0.993 ± 0.004 | 29.35 ± 2.45 | 5.21 ± 0.21 | |
Stepwise 45 and 62 ground | Henderson and Pabis | 0.0278 ± 0.0021 | 1.44 ± 0.11 | 0.993 ± 0.006 | 17.75 ± 12.33 | 3.76 ± 1.38 | |
HAD_62w | 62 (sample not ground) | Lewis Henderson and Pabis | 0.0242 ± 0.0003 | - | 0.995 ± 0.001 | 21.91 ± 8.08 | 4.47 ± 0.85 |
0.0266 ± 0.0004 | 1.25 ± 0.02 | 0.991 ± 0.001 | 21.38 ± 1.92 | 4.25 ± 0.19 |
T (°C) | Thickness (mm) | Deff (×10−10 m2/s) |
---|---|---|
45 | 2.53 | 2.28 ± 0.06 b,c |
62 | 2.27 | 2.64 ± 0.66 b |
70 | 2.77 | 4.83 ± 0.16 a |
Stepwise 62 and 45 | 2.23 | 1.29 ± 0.27 c |
Stepwise 45 and 62 | 2.38 | 2.66 ± 0.04 b |
62 (not ground) | 2.38 | 2.56 ± 0.20 b |
Experiment | Power (W) | k (min−n) | a | b (min−1) | n | (×10−5) | RMSE (×10−3) |
---|---|---|---|---|---|---|---|
MWD_100_2.5 | 100 | 0.0047 ± 0.0033 | 1.00 ± 0.03 | −0.003 ± 0.000 | 1.50 ± 0.26 | 9.75 ± 2.23 | 9.30 ± 0.78 |
MWD_180_2.5 | 180 | 0.0034 ± 0.0021 | 0.95 ± 0.01 | −0.002 ± 0.001 | 2.14 ± 0.29 | 12.76 ± 3.96 | 9.99 ± 1.15 |
MWD_300_2.5 | 300 | 0.0150 ± 0.0050 | 0.99 ± 0.01 | −0.018 ± 0.000 | 1.85 ± 0.09 | 2.41 ± 2.37 | 3.47 ± 1.84 |
MWD_450_2.5 | 450 | 0.0130 ± 0.0010 | 0.89 ± 0.04 | −0.006 ± 0.007 | 2.57 ± 0.20 | 4.51 ± 1.59 | 4.07 ± 0.37 |
MWD_100_300_2.5 | Stepwise 100 and 300 | 0.0021 ± 0.0003 | 1.04 ± 0.01 | −0.007 ± 0.001 | 2.58 ± 0.08 | 4.60 ± 1.36 | 5.65 ± 0.79 |
Experiment | Power (W) | k (min−n) | a | b (min−1) | n | (×10−5) | RMSE (×10−3) |
---|---|---|---|---|---|---|---|
MWD_100_1.5 | 100 | 0.0064 ± 0.0003 | 0.99 ± 0.00 | −0.001 ± 0.000 | 1.50 ± 0.02 | 9.47 ± 1.11 | 9.01 ± 0.55 |
MWD_180_1.5 | 180 | 0.0047 ± 0.0019 | 0.95 ± 0.01 | −0.003 ± 0.002 | 2.10 ± 0.17 | 8.57 ± 0.34 | 9.06 ± 0.06 |
MWD_300_1.5 | 300 | 0.0098 ± 0.0010 | 0.93 ± 0.01 | −0.005 ± 0.001 | 2.37 ± 0.01 | 5.63 ± 1.49 | 6.77 ± 0.61 |
Experiment | Predicted Drying Time (min) | Specific Energy Consumption (kWh/kg) |
---|---|---|
HAD_45 | 236.4 ± 3.6 b | 410.78 ± 6.30 c |
HAD_62 | 136.6 ± 4.9 c | 417.26 ± 15.11 c |
HAD_70 | 125.0 ± 9.2 c,d | 453.75 ± 33.48 c |
HAD_62_45 | 439.5 ± 118.2 a | 763.74 ± 205.40 a |
HAD_45_62 | 189.0 ± 19.5 b,c | 577.37 ± 59.38 b |
HAD_62w | 170.8 ± 5.3 b,c | 521.73 ± 16.05 b,c |
MWD_100_2.5 | 61.5 ± 6.0 d,e | 1.86 ± 0.18 d |
MWD_180_2.5 | 28.3 ± 2.1 e | 1.54 ± 0.12 d |
MWD_300_2.5 | 14.6 ± 0.1 e | 1.32 ± 0.01 d |
MWD_450_2.5 | 11.1 ± 0.2 e | 1.51 ± 0.02 d |
MWD_100_300_2.5 | 17.8 ± 0.1 e | 1.8 ± 0.27 d |
MWD_100_1.5 | 60.9 ± 1.3 d,e | 2.26 ± 0.05 d |
MWD_180_1.5 | 23.9 ± 0.9 e | 1.59 ± 0.06 d |
MWD_300_1.5 | 13.6 ± 0.1 e | 1.51 ± 0.01 d |
Experiment | TPC | ABTS | DPPH | ORAC |
---|---|---|---|---|
(mg GAE/g Pomace DW) | (mg TE/g Pomace DW) | |||
HAD_62w | 26.06 ± 6.25 ab | 63.57 ± 12.75 b | 34.71 ± 5.80 b | 69.41 ± 14.33 a |
MWD_180_1.5 | 37.84 ± 2.10 a | 93.49 ± 3.77 a | 60.49 ± 2.26 a | 41.09 ± 3.78 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, B.Z.R.; Martins, V.F.R.; Pintado, M.E.; Morais, R.M.S.C.; Morais, A.M.M.B. A Comparative Study of Drying Technologies for Apple and Ginger Pomace: Kinetic Modeling and Antioxidant Properties. Processes 2024, 12, 2096. https://doi.org/10.3390/pr12102096
Araujo BZR, Martins VFR, Pintado ME, Morais RMSC, Morais AMMB. A Comparative Study of Drying Technologies for Apple and Ginger Pomace: Kinetic Modeling and Antioxidant Properties. Processes. 2024; 12(10):2096. https://doi.org/10.3390/pr12102096
Chicago/Turabian StyleAraujo, Beatriz Z. R., Valter F. R. Martins, Manuela E. Pintado, Rui M. S. C. Morais, and Alcina M. M. B. Morais. 2024. "A Comparative Study of Drying Technologies for Apple and Ginger Pomace: Kinetic Modeling and Antioxidant Properties" Processes 12, no. 10: 2096. https://doi.org/10.3390/pr12102096
APA StyleAraujo, B. Z. R., Martins, V. F. R., Pintado, M. E., Morais, R. M. S. C., & Morais, A. M. M. B. (2024). A Comparative Study of Drying Technologies for Apple and Ginger Pomace: Kinetic Modeling and Antioxidant Properties. Processes, 12(10), 2096. https://doi.org/10.3390/pr12102096