Evaluation of Various Drying Methods for Mexican Yahualica chili: Drying Characteristics and Quality Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material and Reagents
2.2. Drying Equipment
2.2.1. Indirect Forced Convection Solar Dryer
2.2.2. Microwave Dryer
2.3. Drying Modes
2.3.1. Solar Drying
2.3.2. Microwave Drying
2.3.3. Open Sun Drying Process
2.3.4. Shade Drying Process
2.3.5. Freeze-Drying Process
2.4. Drying Kinetics Parameters
Moisture Ratio
2.5. Quality Parameters
2.5.1. Phytochemical Composition
Total Phenolic Content (TPC)
Total Capsaicinoid Content (TCC) Determination
2.5.2. Antioxidant Activity
2.5.3. Color Determination as a Quality Parameter
2.5.4. Statistical Analysis
3. Results and Discussion
3.1. Drying Experiments
3.2. Phytochemical and Quality Parameters
3.2.1. Total Phenolic Content (TPC) and Antioxidant Activity
3.2.2. Total Capsaicinoid Content (TCC)
3.2.3. Color Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Jesús-Contreras, D.; Martínez-Salvador, L.E.; Ruvalcaba-Gómez, E.; Duhart, F. Agri-Food Routes as Tools for Sustainable Rural Development: The Case of Chili Route in Yahualica Denomination of Origin. In Food, Gastronomy, Sustainability, and Social and Cultural Development: Cross-Disciplinary Perspectives; Academic Press: Cambridge, MA, USA, 2023; pp. 169–183. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M.M. Dehydration of Red Bell-Pepper (Capsicum annuum L.): Change in Drying Behavior, Colour and Antioxidant Content. Food Bioprod. Process. 2011, 89, 504–513. [Google Scholar] [CrossRef]
- Liu, M.; Hu, L.; Deng, N.; Cai, Y.; Li, H.; Zhang, B.; Wang, J. Food Chemistry: X Effects of Different Hot-Air Drying Methods on the Dynamic Changes in Color, Nutrient and Aroma Quality of Three Chili Pepper (Capsicum annuum L.) Varieties. Food Chem. 2024, 22, 101262. [Google Scholar] [CrossRef]
- Getahun, E.; Delele, M.A.; Gabbiye, N.; Fanta, S.W.; Vanierschot, M. Studying the Drying Characteristics and Quality Attributes of Chili Pepper at Different Maturity Stages: Experimental and Mechanistic Model. Case Stud. Therm. Eng. 2021, 26, 101052. [Google Scholar] [CrossRef]
- Mehta, D.; Prasad, P.; Bansal, V.; Siddiqui, M.W.; Sharma, A. Effect of Drying Techniques and Treatment with Blanching on the Physicochemical Analysis of Bitter-Gourd and Capsicum. Lwt 2017, 84, 479–488. [Google Scholar] [CrossRef]
- Souza, C.S.; Daood, H.; Duah, S.A.; Vinogradov, S.; Palotás, G.; Neményi, A.; Helyes, L.; Pék, Z. Stability of Carotenoids, Carotenoid Esters, Tocopherols and Capsaicinoids in New Chili Pepper Hybrids during Natural and Thermal Drying. Lwt 2022, 163, 113520. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Ornelas-Paz, J.D.J.; Martínez-Téllez, M.A.; Santillán, C.; Barbosa-Cánovas, G.V.; Zamudio-Flores, P.B.; Olivas, G.I. Development and Characterization of Edible Films Based on Mucilage of Opuntia Ficus-Indica (L.). J. Food Sci. 2010, 75, E347–E352. [Google Scholar] [CrossRef]
- Núñez-Ramírez, D.; López-Martínez, A.; Medina-Torres, L.; Calderas, F.; Martínez-Prado, M.; Lara, R.; Herrera-Valencia, E.; Anguiano-Vega, G.; Manero, O. Microencapsulation of Acidithiobacillus thiooxidans by Spray Drying Using Biopolymers as Wall Materials: A Potential Alternative for Its Application in the Mining Industry. Miner. Eng. 2021, 166, 106882. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 23 August 2024).
- Aguirre-Mancilla, C.L.; Iturriaga de la Fuente, G.; Ramírez-Pimentel, J.G.; Covarrubias-Prieto, J.; Chablé-Moreno, F.; Raya-Pérez, J.C. Chili cultivation and seed production. Cienc. Y Tecnol. Agrop. México 2017, 5, 19–27. [Google Scholar]
- Sánchez, C. RED BAMX. Available online: https://bamx.org.mx/dia-internacional-para-la-concienciacion-sobre-perdida-y-desperdicio-de-alimentos/ (accessed on 20 July 2024).
- Getahun, E.; Gabbiye, N.; Delele, M.A.; Fanta, S.W.; Vanierschot, M. Two-Stage Solar Tunnel Chili Drying: Drying Characteristics, Performance, Product Quality, and Carbon Footprint Analysis. Sol. Energy 2021, 230, 73–90. [Google Scholar] [CrossRef]
- Lozano, Á.G.B.; Gozález, G.G.; Ramírez, M.D.A. Tecnología de Producción de Chile Seco; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP): Zacatecas, Mexico, 2007. [Google Scholar]
- Lakshmi, D.; Muthukumar, P.; Nayak, P.K. Experimental Investigations on Active Solar Dryers Integrated with Thermal Storage for Drying of Black Pepper. Renew. Energy 2021, 167, 728–739. [Google Scholar] [CrossRef]
- Goel, V.; Dwivedi, A.; Mehra, K.S.; Pathak, S.K.; Tyagi, V.; Bhattacharyya, S.; Pandey, A. Solar Drying Systems for Domestic/Industrial Purposes: A State-of-Art Review on Topical Progress and Feasibility Assessments. Sol. Energy 2024, 267, 112210. [Google Scholar] [CrossRef]
- Xue, K.; Li, J.; Chen, H.; Xu, G.; Liu, T. Development of a Novel Power Generation System Based on the Co-Combustion of Agriculture Biomass and Sludge Integrated with Solar-Aided Sludge Drying. Energy Convers. Manag. 2022, 253, 115185. [Google Scholar] [CrossRef]
- Babar, O.A.; Arora, V.K.; Nema, P.K.; Kasara, A.; Tarafdar, A. Effect of PCM Assisted Flat Plate Collector Solar Drying of Green Chili on Retention of Bioactive Compounds and Control of Aflatoxins Development Grooves for. Sol. Energy 2021, 229, 102–111. [Google Scholar] [CrossRef]
- Atalar, I.; Konar, N.; Dalabasmaz, S.; Kantemur, P.S.; Han, E. Drying and Characterization of Red Beet Color Liquid Process Waste to Develop a Novel Bulking Agent. J. Clean. Prod. 2024, 442, 141030. [Google Scholar] [CrossRef]
- Salve, S.; Fulambarkar, A. A Solar Dryer for Drying Green Chili in a Forced Convection for Increasing the Moisture Removing Rate. Mater. Today Proc. 2021, 45, 3170–3176. [Google Scholar] [CrossRef]
- Palma-Orozco, G.; Orozco-Álvarez, C.; Chávez-Villeda, A.A.; Mixtega-Martínez, A.; Castro-Muñoz, R. Capsaicin Content in Red Habanero Chilli (Capsicum chinense Jacq.) and Its Preservation after Drying Process. Future Foods 2021, 4, 100070. [Google Scholar] [CrossRef]
- Castillo-Téllez, M.; Pilatowsky-Figueroa, I.; López-Vidaña, E.C.; Sarracino-Martínez, O.; Hernández-Galvez, G. Dehydration of the Red Chilli (Capsicum annuum L., Costeño) Using an Indirect-Type Forced Convection Solar Dryer. Appl. Therm. Eng. 2017, 114, 1137–1144. [Google Scholar] [CrossRef]
- Goud, M.; Reddy, M.V.V.; Chandramohan, V.P.; Suresh, S. A Novel Indirect Solar Dryer with Inlet Fans Powered by Solar PV Panels: Drying Kinetics of Capsicum Annum and Abelmoschus Esculentus with Dryer Performance. Sol. Energy 2019, 194, 871–885. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Yazdi, M.H.; Ruslan, M.H.; Gabbasa, M.; Kazem, H.A. Performance Analysis of Solar Drying System for Red Chili. Sol. Energy 2014, 99, 47–54. [Google Scholar] [CrossRef]
- Subrahmanyam, K.; Gul, K.; Paridala, S.; Sehrawat, R.; More, K.S.; Dwivedi, M.; Jaddu, S. Effect of Cold Plasma Pretreatment on Drying Kinetics and Quality Attributes of Apple Slices in Refractance Window Drying. Innov. Food Sci. Emerg. Technol. 2024, 92, 103594. [Google Scholar] [CrossRef]
- Kumar, V.; Devi, M.K. Impact of Different Drying Methods on Sensory and Physicochemical Analysis of Instant Green Bell Pepper Chutney Mix. Meas. Food 2023, 9, 100077. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; De Luca, D.; O’brien, N.; Menichini, F.; Tundis, R. Influence of Drying and Cooking Process on the Phytochemical Content, Antioxidant and Hypoglycaemic Properties of Two Bell Capsicum annum L. Cultivars. Food Chem. Toxicol. 2013, 53, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Yaldiz, G.; Ozguven, M.; Sekeroglu, N. Variation in Capsaicin Contents of Different Capsicum Species and Lines by Varying Drying Parameters. Ind. Crops Prod. 2010, 32, 434–438. [Google Scholar] [CrossRef]
- Tagnamas, Z.; Bahammou, Y.; Kouhila, M.; Hilali, S.; Idlimam, A.; Lamharrar, A. Conservation of Moroccan Truffle (Terfezia boudieri) Using Solar Drying Method. Renew. Energy 2020, 146, 16–24. [Google Scholar] [CrossRef]
- García-Moreira, D.P.; Hernández-Guzmán, H.; Pacheco, N.; Cuevas-Bernardino, J.; Herrera-Pool, I.E.; Moreno, I.; López-Vidaña, E.C. Solar and Convective Drying: Modeling, Color, Texture, Total Phenolic Content, and Antioxidant Activity of Peach (Prunus persica (L.) Batsch) Slices. Processes 2023, 11, 1280. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Cuevas-Benardino, J.C.; Ayora-Talavera, T.; Patrón-Vázquez, J.A.; Rodríguez-Buenfil I y Pacheco, N. Cambios en las propiedades fisicoquímicas, reológicas, biológicas y sensoriales de pastas de chile habanero afectadas por el estado de madurez, conservador natural y procesamiento térmico. Rev. Mex. Ing. Química 2021, 20, 197–214. [Google Scholar] [CrossRef]
- Tagnamas, Z.; Idlimam, A.; Lamharrar, A. Hygroscopic analysis of pre-dried madder roots (Rubia tinctorum L.) using a solar dryer: Implications for safe storage conditions. J. Clean. Prod. 2024, 434, 139848. [Google Scholar] [CrossRef]
- Handayani, S.; Mujiarto, I.; Siswanto, A.; Ariwibowo, D.; Atmanto, I.; Mustikaningrum, M. Drying Kinetics of Chilli under Sun and Microwave Drying. Mater. Today Proc. 2022, 63, S153–S158. [Google Scholar] [CrossRef]
- Fudholi, A.; Othman, M.Y.; Ruslan, M.H.; Sopian, K. Drying of Malaysian Capsicum Annuum L. (Red Chili) Dried by Open and Solar Drying. Int. J. Photoenergy 2013, 2013, 167895. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karatas, H.; Maskan, M. Microwave-Conventional Drying Characteristics of Red Pepper: Modeling, Temperature Profile, Diffusivity and Activation Energy. J. Agric. Sci. Technol. 2020, 22, 425–437. [Google Scholar]
- Pinar, H.; Çetin, N.; Ciftci, B.; Karaman, K.; Kaplan, M. Biochemical Composition, Drying Kinetics and Chromatic Parameters of Red Pepper as Affected by Cultivars and Drying Methods. J. Food Compos. Anal. 2021, 102, 103976. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.d.J.; Martínez-Burrola, J.M.; Ruiz-Cruz, S.; Santana-Rodríguez, V.; Ibarra-Junquera, V.; Olivas, G.I.; Pérez-Martínez, J.D. Effect of cooking on the capsaicinoids and phenolics contents of Mexican peppers. Food Chem. 2010, 119, 1619–1625. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Z.; Sabadash, S. Effect of hot air drying temperatures on drying characteristics and physicochemical properties of beetroot (Beta vulgaris) slices. IOP Conf. Ser. Earth Environ. Sci. 2020, 615, 012099. [Google Scholar] [CrossRef]
- Turkmen, F.; Karasu, S.; Karadag, A. Effects of Different Drying Methods and Temperature on the Drying Behavior and Quality Attributes of Cherry Laurel Fruit. Processes 2020, 8, 761. [Google Scholar] [CrossRef]
- Pacheco, N.; Herrera-Pool, E.; Castañeda-Valbuena, D.; Ramos-Diaz, A.; Ayora-Talavera, T. Phytochemical Compounds from Xcatik (Capsicum annuum L.) Chili Tissues Extracted by Uae: Biological Activity and Phenolic Profile. J. Mex. Chem. Soc. 2023, 67, 200–212. [Google Scholar] [CrossRef]
- Shah, P.; Modi, H.A. Comparative Study of DPPH, ABTS and FRAP Assays for Determination of Antioxidant Activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 636–641. [Google Scholar]
- Paciulli, M.; Medina-Meza, I.G.; Chiavaro, E.; Barbosa-Cánovas, G.V. Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT—Food Sci. Technol. 2016, 68, 98–104. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Zhu, Q.; Xie, C.; Yan, Y. Alterations in physico-chemical properties, microstructure, sensory characteristics, and volatile compounds of red pepper (Capsicum annuum var. conoides) during various thermal drying durations. Food Chem. X 2024, 23, 101566. [Google Scholar] [CrossRef]
- Si, W.; Wa, S.; Chen, Z.; Yin, H. Stability of Capsaicinoid Content at Raised Temperatures. Nat. Prod. Commun. 2014, 9, 985–988. [Google Scholar] [CrossRef]
- Bae, H.; Jayaprakasha, G.K.; Crosby, K.; Yoo, K.S.; Leskovar, D.I.; Jifon, J.; Patil, B.S. Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit matury stage in greenhouse-grown peppers. J. Food Compos. Anal. 2014, 33, 195–202. [Google Scholar] [CrossRef]
- Komonsing, N.; Reyer, S.; Khuwijitjaru, P.; Mahayothee, B.; Müller, J. Drying Behavior and Curcuminoids Changes in Turmeric Slices during Drying under Simulated Solar Radiation as Influenced by Different Transparent Cover Materials. Foods 2022, 11, 696. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, S.V.; Lele, S.S. Optimization of convective dehydration of Beta vulgaris for color retention. Food Bioprocess Technol. 2012, 5, 868–878. [Google Scholar] [CrossRef]
- Tan, S.; Miao, Y.; Zhou, C.; Luo, Y.; Lin, Z.; Xie, R.; Li, W. Effects of Hot Air Drying on Drying Kinetics and Anthocyanin Degradation of Blood-Flesh Peach. Foods 2022, 11, 1596. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moreira, D.P.; Moreno, I.; Irigoyen-Campuzano, J.R.; Martin-Dominguez, I.; Garcia-Valladares, O.; Lopez-Vidana, E.C. Effect of convective drying in color, water activity, and browning index of peach slices. Rev. Mex. Ing. Química 2024, 23, Alim24188. [Google Scholar] [CrossRef]
Drying Mode | TPC (mg GAE/g Dry wt) | Antioxidant Activity | |
---|---|---|---|
ABTS (μmol Eq Trolox/g Dry wt) | DPPH (μmol Eq Trolox/g Dry wt) | ||
Drying in the shade | 10.53 ± 0.55 c | 157.81 ± 9.14 abc | 41.05 ± 1.10 bc |
Open sun drying | 9.40 ± 0.07 a | 137.58 ± 5.81 ab | 23.63 ± 0.53 a |
Freeze Drying | 9.49 ± 0.30 ab | 125.88 ± 14.21 a | 23.97 ± 0.58 a |
70 °C, 150 m3/h | 11.73 ± 0.28 d | 186.91 ± 6.30 bcde | 41.48 ± 0.95 bc |
70 °C, 200 m3/h | 10.70 ± 0.27 c | 161.87 ± 8.48 abc | 27.44 ± 0.31 a |
70 °C, 250 m3/h | 10.40 ± 0.20 bc | 180.21 ± 19.05 bcde | 31.84 ± 4.27 ab |
40 °C, 300 m3/h | 12.48 ± 0.01 def | 196.72 ± 2.35 cde | 51.40 ± 3.79 d |
50 °C, 300 m3/h | 14.67 ± 0.18 g | 225.11 ± 37.93 ef | 54.18 ± 1.81 d |
60 °C, 300 m3/h | 19.23 ± 0.36 h | 262.62 ± 36.63 f | 69.09 ± 4.52 ef |
90 W, MwD | 11.89 ± 0.09 de | 171.22 ± 5.36 abcd | 50.79 ± 1.82 cd |
160 W, MwD | 11.97 ± 0.32 de | 216.43 ± 10.46 def | 57.42 ± 8.04 d |
360 W, MwD | 13.30 ± 0.61 f | 198.16 ± 10.02 cde | 59.38 ± 3.79 de |
600 W, MwD | 12.75 ± 0.30 ef | 194.08 ± 0.31 cde | 69.97 ± 1.30 f |
Sample | TCC (SHU) | Capsaicinoids | |||
---|---|---|---|---|---|
Capsaicin (mg/g Dry wt) | Dihydrocapsaicin (mg/g Dry wt) | ΔCP (%) | ΔDHC (%) | ||
Freeze drying | 35,724 ± 203 a | 1.70 ± 0.01 ab(63%) * | 0.52 ± 0.00 a (37%) * | 0 | 0 |
Drying in the shape | 46,380 ± 5342 ab | 1.85 ± 0.21 abc(64%) * | 1.03 ± 0.12 bcde (36%) * | 8.18 | 49.72 |
Open sun drying | 58,192 ± 2493 c | 2.27 ± 0.09 cd (63%) | 1.34 ± 0.07 f (37%) | 25.11 | 61.51 |
70 °C, 150 m3/h | 61,015 ± 4722 c | 2.54 ± 0.20 de (67%) | 1.25 ± 0.10 ef (33%) | 32.89 | 58.80 |
70 °C, 200 m3/h | 54,070 ± 4244 c | 2.51 ± 0.25 de (67%) | 1.25 ± 0.10 ef (33%) | 32.1 | 58.86 |
70 °C, 250 m3/h | 65,520 ± 892 c | 2.78 ± 0.04 e (68%) | 1.29 ± 0.07 ef (32%) | 38.78 | 59.94 |
40 °C, 300 m3/h | 46,732 ± 2210 ab | 1.93 ± 0.09 bc (66%) | 0.97 ± 0.04 bcd (34%) | 11.95 | 46.74 |
50 °C, 300 m3/h | 54,451 ± 2872 bc | 2.28 ± 0.12 cd (67%) | 1.10 ± 0.06 cdef (33%) | 25.22 | 53.30 |
60 °C, 300 m3/h | 62,263 ± 723 c | 2.65 ± 0.03 de (68%) | 1.22 ± 0.01 def (32%) | 35.70 | 57.67 |
90 W, MwD | 35,477 ± 468 a | 1.41 ± 0.01 a (63%) | 0.80 ± 0.02 b (37%) | −21.01 | 35.21 |
160 W, MwD | 40,093 ± 2260 a | 1.60 ± 0.08 ab (64%) | 0.89 ± 0.06 bc (36%) | −6.56 | 42.17 |
360 W, MwD | 60,659 ± 8384 c | 2.55 ± 0.35 de (67%) | 1.21 ± 0.17 ef (33%) | 33.32 | 57.50 |
600 W, MwD | 39,968 ± 942 a | 1.63 ± 0.04 ab (66%) | 0.85 ± 0.02 b (34%) | −4.22 | 39.20 |
Sample | L* | a* | b* | ΔE | °Hue | Chroma |
---|---|---|---|---|---|---|
Drying in the shape | 52.55 ± 1.79 cde | 8.91 ± 1.15 c | 31.60 ± 1.49 bcd | 16.39 b | 0.54 ± 0.49 a | 32.84 ± 1.68 bc |
Open sun drying | 51.20 ± 1.04 cd | 14.28 ± 0.83 f | 30.27 ± 0.59 b | 21.40 c | −1.66 ± 0.32 a | 33.47 ± 0.85 c |
Freeze drying | 63.1 ± 1.01 | −1.6 ± 0.01 | 38.2 ± 1.55 | NA | NA | NA |
70 °C, 150 m3/h | 52.52 ± 2.01 cde | 7.58 ± 0.84 bc | 33.05 ± 1.51 cd | 15.07 ab | 3.70 ± 3.15 a | 34.53 ± 1.10 c |
70 °C, 200 m3/h | 51.97 ± 0.88 cde | 8.95 ± 0.58 c | 31.22 ± 0.75 bc | 16.88 b | 0.39 ± 0.27 a | 32.48 ± 0.80 bc |
70 °C, 250 m3/h | 53.85 ± 0.86 de | 12.40 ± 0.93 e | 36.27 ± 1.93 e | 17.01 b | −0.21 ± 0.36 a | 38.34 ± 1.76 e |
40 °C, 300 m3/h | 48.40 ± 1.46 b | 8.13 ± 0.45 c | 29.88 ± 1.03 ab | 19.53 c | 0.67 ± 0.44 a | 30.98 ± 0.94 ab |
50 °C, 300 m3/h | 42.77 ± 1.06 a | 14.73 ± 0.72 f | 33.72 ± 1.27 d | 26.51 d | −1.15 ± 0.09 a | 36.80 ± 1.44 de |
60 °C, 300 m3/h | 41.78 ± 2.73 a | 10.50 ± 0.96 d | 27.72 ± 1.16 a | 26.74 d | −0.55 ± 0.22 a | 29.64 ± 1.37 a |
90 W, MwD | 53.80 ± 0.99 de | 5.45 ± 0.50 a | 31.60 ± 1.49 bcd | 13.39 a | −0.51 ± 0.45 a | 32.84 ± 1.68 bc |
160 W, MwD | 53.80 ± 1.01 de | 6.25 ± 0.55 ab | 31.93 ± 0.92 bcd | 13.74 a | −4.43 ± 3.77 a | 33.91 ± 1.65 bc |
360 W, MwD | 50.55 ± 1.24 bc | 8.37 ± 0.80 c | 31.60 ± 1.49 cd | 16.74 b | 1.41 ± 0.74 a | 36.93 ± 0.41 cd |
600 W, MwD | 54.25 ± 0.41 e | 7.77 ± 0.20 c | 31.60 ± 1.49 e | 13.07 a | −4.25 ± 3.89 a | 32.25 ± 1.28 de |
Sample | Color | Sample | Color | Sample | Color |
---|---|---|---|---|---|
Drying in the shape | 70 °C, 250 m3/h | 160 W, MwD | |||
Open sun drying | 40 °C, 300 m3/h | 360 W, MwD | |||
Freeze drying | 50 °C, 300 m3/h | 600 W, MwD | |||
70 °C–150 m3/h | 60 °C, 300 m3/h | ||||
70 °C–200 m3/h | 90 W, MwD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Moreira, D.P.; Pacheco, N.; Hernández-Guzmán, H.; Bahammou, Y.; Tagnamas, Z.; Moreno, I.; López-Vidaña, E.C. Evaluation of Various Drying Methods for Mexican Yahualica chili: Drying Characteristics and Quality Assessment. Processes 2024, 12, 1969. https://doi.org/10.3390/pr12091969
García-Moreira DP, Pacheco N, Hernández-Guzmán H, Bahammou Y, Tagnamas Z, Moreno I, López-Vidaña EC. Evaluation of Various Drying Methods for Mexican Yahualica chili: Drying Characteristics and Quality Assessment. Processes. 2024; 12(9):1969. https://doi.org/10.3390/pr12091969
Chicago/Turabian StyleGarcía-Moreira, Diana Paola, Neith Pacheco, Harumi Hernández-Guzmán, Younes Bahammou, Zakaria Tagnamas, Ivan Moreno, and Erick César López-Vidaña. 2024. "Evaluation of Various Drying Methods for Mexican Yahualica chili: Drying Characteristics and Quality Assessment" Processes 12, no. 9: 1969. https://doi.org/10.3390/pr12091969
APA StyleGarcía-Moreira, D. P., Pacheco, N., Hernández-Guzmán, H., Bahammou, Y., Tagnamas, Z., Moreno, I., & López-Vidaña, E. C. (2024). Evaluation of Various Drying Methods for Mexican Yahualica chili: Drying Characteristics and Quality Assessment. Processes, 12(9), 1969. https://doi.org/10.3390/pr12091969