A Systematic Approach to Determining the Kinetics of the Combustion of Biomass Char in a Fluidised Bed Reactor
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of Interphase Mass Transfer (Campaign 1)
3.2. Influence of External Mass Transfer (Campaign 2)
3.3. Influence of Combustion Temperature (Campaign 3)
4. Discussion
4.1. The Conversion Function,
4.2. Effect of Intraparticle Mass Transfer
4.3. Intrinsic Kinetics of Combustion
4.4. Effect of Heat Transfer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kwong, K.Y.; Marek, E.J. Combustion of Biomass in Fluidized Beds: A Review of Key Phenomena and Future Perspectives. Energy Fuels 2021, 35, 16303–16334. [Google Scholar] [CrossRef]
- Spliethoff, H. Power Generation from Solid Fuels; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Mueller, A.; Haustein, H.D.; Stoesser, P.; Kreitzberg, T.; Kneer, R.; Kolb, T. Gasification Kinetics of Biomass- and Fossil-Based Fuels: Comparison Study Using Fluidized Bed and Thermogravimetric Analysis. Energy Fuels 2015, 29, 6717–6723. [Google Scholar] [CrossRef]
- Morin, M.; Pécate, S.; Hémati, M. Kinetic study of biomass char combustion in a low temperature fluidized bed reactor. Chem. Eng. J. 2018, 331, 265–277. [Google Scholar] [CrossRef]
- McMurchie, E.J.; Olatunji, J.; Kwong, K.Y.; Marek, E.J.; Hayhurst, A.N. The kinetics and mechanism of the combustion of the carbon in biochar from oak, as studied in an electrically heated, fluidised bed of sand. Fuel 2024, 378, 132677. [Google Scholar] [CrossRef]
- Kwong, K.Y.; Kwong, K.Y.; Harrison, A.R.P.; Harrison, A.R.P.; Gebers, J.C.; Gebers, J.C.; Dennis, J.S.; Dennis, J.S.; Marek, E.J.; Marek, E.J. Chemical Looping Combustion of a Biomass Char in Fe2O3-, CuO-, and SrFeO3−δ-Based Oxygen Carriers. Energy Fuels 2022, 36, 9437–9449. [Google Scholar] [CrossRef]
- Kwong, K.; Mao, R.; Scott, S.; Dennis, J.; Marek, E. Analysis of the rate of combustion of biomass char in a fluidised bed of CLOU particles. Chem. Eng. J. 2021, 417, 127942. [Google Scholar] [CrossRef]
- Scala, F. Mass transfer around freely moving active particles in the dense phase of a gas fluidized bed of inert particles. Chem. Eng. Sci. 2007, 62, 4159–4176. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 2nd ed.; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Fennell, P.; Dennis, J.; Hayhurst, A. The order with respect to oxygen and the activation energy for the burning of an anthracitic char in O2 in a fluidised bed, as measured using a rapid analyser for CO and CO2. Proc. Combust. Inst. 2009, 32, 2051–2058. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Perlmutter, D.D. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 1980, 26, 379–386. [Google Scholar] [CrossRef]
- Ballal, G.; Zygourakis, K. Evolution of pore surface area during noncatalytic gas-solid reactions. 2. Experimental results and model validation. Ind. Eng. Chem. Res. 1987, 26, 1787–1796. [Google Scholar] [CrossRef]
- Saucedo, M.A.; Lim, J.Y.; Dennis, J.S.; Scott, S.A. CO2-gasification of a lignite coal in the presence of an iron-based oxygen carrier for chemical-looping combustion. Fuel 2014, 127, 186–201. [Google Scholar] [CrossRef]
- Dai, P.; González, B.; Dennis, J.S. Using an experimentally-determined model of the evolution of pore structure for the gasification of chars by CO2. Fuel 2016, 171, 29–43. [Google Scholar] [CrossRef]
- Marek, E.J.; Zheng, Y.; Scott, S.A. Enhancement of char gasification in CO2 during chemical looping combustion. Chem. Eng. J. 2018, 354, 137–148. [Google Scholar] [CrossRef]
- Zheng, Y.; Marek, E.; Scott, S.A. The effect of CO on CO2-char gasification. Proc. Combust. Inst. 2021, 38, 4261–4269. [Google Scholar] [CrossRef]
- Hong, J.; Hecker, W.C.; Fletcher, T.H. Improving the Accuracy of Predicting Effectiveness Factors for mth Order and Langmuir Rate Equations in Spherical Coordinates. Energy Fuels 2000, 14, 663–670. [Google Scholar] [CrossRef]
- Haugen, N.E.L.; Loong, B.K.Y.; Mitchell, R.E. Numerical approaches for thermochemical conversion of char. Prog. Energy Combust. Sci. 2022, 91, 100993. [Google Scholar] [CrossRef]
- Di Blasi, C. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 2009, 35, 121–140. [Google Scholar] [CrossRef]
- Recari, J.; Berrueco, C.; Abelló, S.; Montané, D.; Farriol, X. Effect of temperature and pressure on characteristics and reactivity of biomass-derived chars. Bioresour. Technol. 2014, 170, 204–210. [Google Scholar] [CrossRef]
- Peterson, C.A.; Brown, R.C. Oxidation kinetics of biochar from woody and herbaceous biomass. Chem. Eng. J. 2020, 401, 126043. [Google Scholar] [CrossRef]
- Kwong, K.Y.; Dennis, J.S.; Marek, E.J. Application of particle-scale modelling to the combustion of a char particle in a fluidised bed of CLOU particles. Fuel 2023, 342, 127902. [Google Scholar] [CrossRef]
- von Berg, L.; Soria-Verdugo, A.; Hochenauer, C.; Scharler, R.; Anca-Couce, A. Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed. Int. J. Heat Mass Transf. 2020, 160, 120175. [Google Scholar] [CrossRef]
- Leckner, B. Heat and mass transfer to/from active particles in a fluidized bed—An analysis of the Baskakov-Palchonok correlation. Int. J. Heat Mass Transf. 2021, 168, 120860. [Google Scholar] [CrossRef]
Campaign | Temperature (K) | Mass of Char (mg) | Particle Size (µm) | Concentration of O2 (vol%) | Purpose |
---|---|---|---|---|---|
1 | 823, 873 | 6, 10, 14, 19, 21 | 200–250 | 5, 11, 21 | assessment of the influence of interphase mass transfer on the apparent kinetics |
2 | 773 | 6, 12 | 200–255, 250–300, 300–355, 355–422, 422–500, 500–600 | 21 | influence of interparticle (external) mass transfer on the apparent kinetics |
3 | 723, 748, 773, 798, 823, 848, 863, 873, 883, 898, 923, 948, 973, 1023, 1073, 1123 | 10 1 | 250–300 | 5, 21 | identification of the combustion regimes, assessment of the intrinsic kinetics of combustion |
Parameter | Concentration of O2 (vol%) | Regime | ||
---|---|---|---|---|
I | II | III | ||
Temperature range (K) | 21 | <798 | 798–873 | >883 |
5 | <798 | 798–883 | >898 | |
(kJ mol−1) | 21 | 155 (126, 183) | 57.0 (49.0, 65.0) | 9.3 (4.2, 14.3) |
5 | 142 (-) * | 57.0 (55.8, 58.1) | 29.2 (24.6, 33.8) | |
(s−1) | 21 | 4.7 × 108 (2.56 × 106, 1.61 × 1010) | 1.26 × 102 (4.02 × 101, 3.97 × 102) | 1.78 × 10−1 (9.24 × 10−2, 3.44 × 10−1) |
5 | 3.11 × 107 (-) * | 5.36 × 101 (4.53 × 101, 6.34 × 101) | 1.46 × 100 (8.09 × 10−1, 2.64 × 100) |
Modelled as O(7) Polynomial; f(0.1) = 1.27 | ||
---|---|---|
bar | bar | |
(kJ mol−1) | 154.6 | 141.8 |
(bar−n s−1) | (2.18 ± 0.06) × 109 | (4.33 ± 0.23) × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newman, S.G.; Kwong, K.Y.; Marek, E.J. A Systematic Approach to Determining the Kinetics of the Combustion of Biomass Char in a Fluidised Bed Reactor. Processes 2024, 12, 2103. https://doi.org/10.3390/pr12102103
Newman SG, Kwong KY, Marek EJ. A Systematic Approach to Determining the Kinetics of the Combustion of Biomass Char in a Fluidised Bed Reactor. Processes. 2024; 12(10):2103. https://doi.org/10.3390/pr12102103
Chicago/Turabian StyleNewman, S. G., K. Y. Kwong, and E. J. Marek. 2024. "A Systematic Approach to Determining the Kinetics of the Combustion of Biomass Char in a Fluidised Bed Reactor" Processes 12, no. 10: 2103. https://doi.org/10.3390/pr12102103
APA StyleNewman, S. G., Kwong, K. Y., & Marek, E. J. (2024). A Systematic Approach to Determining the Kinetics of the Combustion of Biomass Char in a Fluidised Bed Reactor. Processes, 12(10), 2103. https://doi.org/10.3390/pr12102103