1H-NMR, HPSEC-RID, and HPAEC-PAD Characterization of Polysaccharides Extracted by Hydrodynamic Cavitation from Apple and Pomegranate By-Products for Their Valorization: A Focus on Pectin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Plant Material
2.3. Extraction Using Hydrodynamic Cavitation
2.4. Isolation of Polysaccharidic Material
2.5. Purification through Dialysis
2.6. Phenols and Protein Detection by Qualitative 1H-NMR
2.7. High-Performance Size Exclusion Chromatography (HPSEC) Analysis
2.8. Monosaccharides and Galacturonic Acid Analysis by High-Performance Anion Exchange Chromatography—Pulsed Amperometric Detector (HPAEC-PAD)
2.9. Degree of Methylation and Acetylation through 1H-NMR
2.10. Data Analysis
3. Results and Discussion
3.1. Polysaccharides Quality Evaluation by 1H-NMR
3.2. Galacturonic Acid Content and Sugar Analysis by HPAEC-PAD
3.3. Degree of Esterification by 1H-NMR
3.4. Molecular Weight Evaluation by HPSEC-RID
3.5. New Insights and Potentialities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.-W.; Du, Z.-M.; Wang, Y.-W.; Feng, Y.-X.; Zhang, R.; Yan, X.-B. Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers 2022, 14, 4161. [Google Scholar] [CrossRef] [PubMed]
- Ebringerová, A.; Hromádková, Z. An Overview on the Application of Ultrasound in Extraction, Separation and Purification of Plant Polysaccharides. Open Chem. 2010, 8, 243–257. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef]
- Tang, C.; Ding, R.; Sun, J.; Liu, J.; Kan, J.; Jin, C. The Impacts of Natural Polysaccharides on Intestinal Microbiota and Immune Responses—A Review. Food Funct. 2019, 10, 2290–2312. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Chen, T.; Chen, X. A Review of the Antibacterial Activity and Mechanisms of Plant Polysaccharides. Trends Food Sci. Technol. 2022, 123, 264–280. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Extraction, Purification and Characterization of Pectin from Alternative Sources with Potential Technological Applications. Food Res. Int. 2018, 113, 327–350. [Google Scholar] [CrossRef]
- Mao, G.; Wu, D.; Wei, C.; Tao, W.; Ye, X.; Linhardt, R.J.; Orfila, C.; Chen, S. Reconsidering Conventional and Innovative Methods for Pectin Extraction from Fruit and Vegetable Waste: Targeting Rhamnogalacturonan I. Trends Food Sci. Technol. 2019, 94, 65–78. [Google Scholar] [CrossRef]
- Schieber, A. Side Streams of Plant Food Processing As a Source of Valuable Compounds: Selected Examples. Annu. Rev. Food Sci. Technol. 2017, 8, 97–112. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Chithra, P.L.; Henila, M. Apple Fruit Sorting Using Novel Thresholding and Area Calculation Algorithms. Soft Comput. 2021, 25, 431–445. [Google Scholar] [CrossRef]
- Balli, D.; Khatib, M.; Cecchi, L.; Adessi, A.; Melgarejo, P.; Nunes, C.; Coimbra, M.A.; Mulinacci, N. Pomegranate Peel as a Promising Source of Pectic Polysaccharides: A Multi-Methodological Analytical Investigation. Food Chem. 2022, 397, 133550. [Google Scholar] [CrossRef] [PubMed]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.S.; Khodaiyan, F.; Kazemi, M.; Najari, Z. Optimization and Characterization of Pectin Extracted from Sour Orange Peel by Ultrasound Assisted Method. Int. J. Biol. Macromol. 2019, 125, 621–629. [Google Scholar] [CrossRef]
- Liew, S.Q.; Teoh, W.H.; Tan, C.K.; Yusoff, R.; Ngoh, G.C. Subcritical Water Extraction of Low Methoxyl Pectin from Pomelo (Citrus grandis (L.) Osbeck) Peels. Int. J. Biol. Macromol. 2018, 116, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Wikiera, A.; Mika, M.; Grabacka, M. Multicatalytic Enzyme Preparations as Effective Alternative to Acid in Pectin Extraction. Food Hydrocoll. 2015, 44, 156–161. [Google Scholar] [CrossRef]
- Asaithambi, N.; Singha, P.; Dwivedi, M.; Singh, S.K. Hydrodynamic Cavitation and Its Application in Food and Beverage Industry: A Review. J. Food Process Eng. 2019, 42, e13144. [Google Scholar] [CrossRef]
- Gallina, L.; Cravotto, C.; Capaldi, G.; Grillo, G.; Cravotto, G. Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes 2022, 10, 2233. [Google Scholar] [CrossRef]
- Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Beer-Brewing Powered by Controlled Hydrodynamic Cavitation: Theory and Real-Scale Experiments. J. Clean. Prod. 2017, 142, 1457–1470. [Google Scholar] [CrossRef]
- Albanese, L.; Bonetti, A.; D’Acqui, L.; Meneguzzo, F.; Zabini, F. Affordable Production of Antioxidant Aqueous Solutions by Hydrodynamic Cavitation Processing of Silver Fir (Abies Alba Mill.) Needles. Foods 2019, 8, 65. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Brunetti, C.; Fidalgo, A.; Ciriminna, R.; Delisi, R.; Albanese, L.; Zabini, F.; Gori, A.; Dos Santos Nascimento, L.; De Carlo, A.; et al. Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation. Processes 2019, 7, 581. [Google Scholar] [CrossRef]
- Nuzzo, D.; Cristaldi, L.; Sciortino, M.; Albanese, L.; Scurria, A.; Zabini, F.; Lino, C.; Pagliaro, M.; Meneguzzo, F.; Di Carlo, M.; et al. Exceptional Antioxidant, Non-Cytotoxic Activity of Integral Lemon Pectin from Hydrodynamic Cavitation. ChemistrySelect 2020, 5, 5066–5071. [Google Scholar] [CrossRef]
- Flori, L.; Albanese, L.; Calderone, V.; Meneguzzo, F.; Pagliaro, M.; Ciriminna, R.; Zabini, F.; Testai, L. Cardioprotective Effects of Grapefruit IntegroPectin Extracted via Hydrodynamic Cavitation from By-Products of Citrus Fruits Industry: Role of Mitochondrial Potassium Channels. Foods 2022, 11, 2799. [Google Scholar] [CrossRef] [PubMed]
- Breschi, C.; D’Agostino, S.; Meneguzzo, F.; Zabini, F.; Chini, J.; Lovatti, L.; Tagliavento, L.; Guerrini, L.; Bellumori, M.; Cecchi, L.; et al. Can a Fraction of Flour and Sugar Be Replaced with Fruit By-Product Extracts in a Gluten-Free and Vegan Cookie Recipe? Molecules 2024, 29, 1102. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, A.; Gismondi, A.; Chirico, R.; Di Marco, G.; Petrone, V.; Fanelli, M.; D’Agostino, A.; Canini, A.; Grelli, S.; Albanese, L.; et al. Antioxidant Phytocomplexes Extracted from Pomegranate (Punica granatum L.) Using Hydrodynamic Cavitation Show Potential Anticancer Activity In Vitro. Antioxidants 2023, 12, 1560. [Google Scholar] [CrossRef]
- Benedetti, G.; Flori, L.; Spezzini, J.; Miragliotta, V.; Lazzarini, G.; Pirone, A.; Meneguzzo, C.; Tagliavento, L.; Martelli, A.; Antonelli, M.; et al. Improved Cardiovascular Effects of a Novel Pomegranate Byproduct Extract Obtained through Hydrodynamic Cavitation. Nutrients 2024, 16, 506. [Google Scholar] [CrossRef]
- Huang, H.; Huang, G. Extraction, Separation, Modification, Structural Characterization, and Antioxidant Activity of Plant Polysaccharides. Chem. Biol. Drug Des. 2020, 96, 1209–1222. [Google Scholar] [CrossRef]
- Zdunek, A.; Pieczywek, P.M.; Cybulska, J. The Primary, Secondary, and Structures of Higher Levels of Pectin Polysaccharides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1101–1117. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin Structure and Biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Y.; Bao, Q.; Jiang, Z.; Zhu, Y.; Ni, H.; Li, Q.; Oda, T. A Low-Molecular-Weight Ascophyllan Prepared from Ascophyllum Nodosum: Optimization, Analysis and Biological Activities. Int. J. Biol. Macromol. 2020, 153, 107–117. [Google Scholar] [CrossRef]
- Morris, G.A.; Adams, G.G.; Harding, S.E. On Hydrodynamic Methods for the Analysis of the Sizes and Shapes of Polysaccharides in Dilute Solution: A Short Review. Food Hydrocoll. 2014, 42, 318–334. [Google Scholar] [CrossRef]
- Kontogiorgos, V. (Ed.) Pectin: Technological and Physiological Properties; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-53420-2. [Google Scholar]
- Xu, Y.; Jiang, H.; Sun, C.; Adu-Frimpong, M.; Deng, W.; Yu, J.; Xu, X. Antioxidant and Hepatoprotective Effects of Purified Rhodiola Rosea Polysaccharides. Int. J. Biol. Macromol. 2018, 117, 167–178. [Google Scholar] [CrossRef]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Huang, P.; Zhang, L.; Qiu, Y.; Qi, H.; Leng, A.; Shang, D. Hepatoprotective Effect of Plant Polysaccharides from Natural Resources: A Review of the Mechanisms and Structure-Activity Relationship. Int. J. Biol. Macromol. 2020, 161, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Grassino, A.N.; Barba, F.J.; Brnčić, M.; Lorenzo, J.M.; Lucini, L.; Brnčić, S.R. Analytical Tools Used for the Identification and Quantification of Pectin Extracted from Plant Food Matrices, Wastes and by-Products: A Review. Food Chem. 2018, 266, 47–55. [Google Scholar] [CrossRef]
- Müller-Maatsch, J.; Caligiani, A.; Tedeschi, T.; Elst, K.; Sforza, S. Simple and Validated Quantitative 1 H NMR Method for the Determination of Methylation, Acetylation, and Feruloylation Degree of Pectin. J. Agric. Food Chem. 2014, 62, 9081–9087. [Google Scholar] [CrossRef]
- Garna, H.; Mabon, N.; Wathelet, B.; Paquot, M. New Method for a Two-Step Hydrolysis and Chromatographic Analysis of Pectin Neutral Sugar Chains. J. Agric. Food Chem. 2004, 52, 4652–4659. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Khatib, M.; Bellumori, M.; Cairone, F.; Carradori, S.; Zengin, G.; Cesa, S.; Innocenti, M.; Mulinacci, N. Characterization of Arils Juice and Peel Decoction of Fifteen Varieties of Punica granatum L.: A Focus on Anthocyanins, Ellagitannins and Polysaccharides. Antioxidants 2020, 9, 238. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Albanese, L.; Zabini, F. Hydrodynamic Cavitation in Beer and Other Beverage Processing. In Innovative Food Processing Technologies: A Comprehensive Review; Elsevier: Amsterdam, The Netherlands, 2020; pp. 369–384. ISBN 978-0-12-815782-4. [Google Scholar]
- Baghdadi, F.; Nayebzadeh, K.; Aminifar, M.; Mortazavian, A.M. Pectin Purification from Plant Materials. Macromol. Res. 2023, 31, 753–770. [Google Scholar] [CrossRef]
- Khatib, M.; Al-Tamimi, A.; Cecchi, L.; Adessi, A.; Innocenti, M.; Balli, D.; Mulinacci, N. Phenolic Compounds and Polysaccharides in the Date Fruit (Phoenix dactylifera L.): Comparative Study on Five Widely Consumed Arabian Varieties. Food Chem. 2022, 395, 133591. [Google Scholar] [CrossRef]
- Gaglianò, M.; Conidi, C.; Bartella, L.; Salvino, R.A.; Di Donna, L.; Cassano, A.; De Luca, G. An Integrated Approach Based on NMR and HPLC–UV-ESI–MS/MS to Characterize Apple Juices and Their Nanofiltration (NF) Bioactive Extracts. Food Bioprocess Technol. 2021, 14, 2273–2285. [Google Scholar] [CrossRef]
- Abid, M.; Cheikhrouhou, S.; Renard, C.M.G.C.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M.A. Characterization of Pectins Extracted from Pomegranate Peel and Their Gelling Properties. Food Chem. 2017, 215, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, N.; Nylander, F.; Malmhäll-Bah, E.; Sjövold, K.; Edlund, U.; Westman, G.; Albers, E. Composition and Structure of Cell Wall Ulvans Recovered from Ulva Spp. along the Swedish West Coast. Carbohydr. Polym. 2020, 233, 115852. [Google Scholar] [CrossRef]
- Zeppenfeld, S.; Van Pinxteren, M.; Engel, A.; Herrmann, H. A Protocol for Quantifying Mono- and Polysaccharides in Seawater and Related Saline Matrices by Electro-Dialysis (ED)—Combined with HPAEC-PAD. Ocean Sci. 2020, 16, 817–830. [Google Scholar] [CrossRef]
- Cravotto, G.; Cintas, P. Power Ultrasound in Organic Synthesis: Moving Cavitational Chemistry from Academia to Innovative and Large-Scale Applications. Chem. Soc. Rev. 2006, 35, 180–196. [Google Scholar] [CrossRef]
- Braeutigam, P.; Franke, M.; Wu, Z.-L.; Ondruschka, B. Role of Different Parameters in the Optimization of Hydrodynamic Cavitation. Chem. Eng. Technol. 2010, 33, 932–940. [Google Scholar] [CrossRef]
- Panda, D.; Saharan, V.K.; Manickam, S. Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes 2020, 8, 220. [Google Scholar] [CrossRef]
- Choi, I.; Hong, W.; Lee, J.-S.; Han, J. Influence of Acetylation and Chemical Interaction on Edible Film Properties and Different Processing Methods for Food Application. Food Chem. 2023, 426, 136555. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, X.; Li, X.; Ma, Z. Effects of Acetylation on the Emulsifying Properties of Artemisia Sphaerocephala Krasch. Polysaccharide. Carbohydr. Polym. 2016, 144, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, G.; Spano, M.; Esposito, C.; Santarcangelo, C.; Baldi, A.; Daglia, M.; Mannina, L.; Ingallina, C.; Sobolev, A.P. NMR Characterization of Ten Apple Cultivars from the Piedmont Region. Foods 2021, 10, 289. [Google Scholar] [CrossRef]
- Nicolas, J.J.; Richard-Forget, F.C.; Goupy, P.M.; Amiot, M.; Aubert, S.Y. Enzymatic Browning Reactions in Apple and Apple Products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO Compedium of Food Additive Specifications; FAO: Rome, Italy, 2009. [Google Scholar]
- Oosterveld, A.; Beldman, G.; Schols, H.A.; Voragen, A.G.J. Characterization of Arabinose and Ferulic Acid Rich Pectic Polysaccharides and Hemicelluloses from Sugar Beet Pulp. Carbohydr. Res. 2000, 328, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Zandleven, J.; Beldman, G.; Bosveld, M.; Schols, H.A.; Voragen, A.G.J. Enzymatic Degradation Studies of Xylogalacturonans from Apple and Potato, Using Xylogalacturonan Hydrolase. Carbohydr. Polym. 2006, 65, 495–503. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Farag, M.A. (Eds.) Mediterranean Fruits Bio-Wastes: Chemistry, Functionality and Technological Applications; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-84435-6. [Google Scholar]
- Joseph, M.M.; Aravind, S.R.; Varghese, S.; Mini, S.; Sreelekha, T.T. Evaluation of Antioxidant, Antitumor and Immunomodulatory Properties of Polysaccharide Isolated from Fruit Rind of Punica Granatum. Mol. Med. Rep. 2012, 5, 489–496. [Google Scholar] [CrossRef]
- Shakhmatov, E.G.; Makarova, E.N.; Belyy, V.A. Structural Studies of Biologically Active Pectin-Containing Polysaccharides of Pomegranate Punica Granatum. Int. J. Biol. Macromol. 2019, 122, 29–36. [Google Scholar] [CrossRef]
- Shakhmatov, E.G.; Toukach, P.V.; Makarova, E.N. Structural Studies of the Pectic Polysaccharide from Fruits of Punica Granatum. Carbohydr. Polym. 2020, 235, 115978. [Google Scholar] [CrossRef]
- Naqash, F.; Masoodi, F.A.; Gani, A.; Nazir, S.; Jhan, F. Pectin Recovery from Apple Pomace: Physico-Chemical and Functional Variation Based on Methyl-Esterification. Int. J. Food Sci. Technol. 2021, 56, 4669–4679. [Google Scholar] [CrossRef]
- Schmidt, U.S.; Koch, L.; Rentschler, C.; Kurz, T.; Endreß, H.U.; Schuchmann, H.P. Effect of Molecular Weight Reduction, Acetylation and Esterification on the Emulsification Properties of Citrus Pectin. Food Biophys. 2015, 10, 217–227. [Google Scholar] [CrossRef]
- Pippen, E.L.; McCready, R.M.; Owens, H.S. Gelation Properties of Partially Acetylated Pectins2. J. Am. Chem. Soc. 1950, 72, 813–816. [Google Scholar] [CrossRef]
- Rascón-Chu, A.; Martínez-López, A.L.; Carvajal-Millán, E.; Ponce De León-Renova, N.E.; Márquez-Escalante, J.A.; Romo-Chacón, A. Pectin from Low Quality ‘Golden Delicious’ Apples: Composition and Gelling Capability. Food Chem. 2009, 116, 101–103. [Google Scholar] [CrossRef]
- Bhat, M.I.; Rashid, S.J.; Ahmad, M.I.; Rafiq, S.; Fayaz, I.; Mir, M.J.; Amin, T.; Majid, D.; Dar, B.N.; Makroo, H.A. Comparative Study on Thermo-Mechanical, Structural and Functional Properties of Pectin Extracted from Immature Wasted Apples and Commercial Pectin. Int. J. Biol. Macromol. 2024, 254, 127658. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Schols, H.A.; Pilnik, W. Determination of the Degree of Methylation and Acetylation of Pectins by h.p.l.c. Food Hydrocoll. 1986, 1, 65–70. [Google Scholar] [CrossRef]
- Komalavilas, P.; Mort, A.J. The Acetylation at O-3 of Galacturonic Acid in the Rhamnose-Rich Portions of Pectins. Carbohydr. Res. 1989, 261–272. [Google Scholar] [CrossRef]
- Yang, X.; Nisar, T.; Hou, Y.; Gou, X.; Sun, L.; Guo, Y. Pomegranate Peel Pectin Can Be Used as an Effective Emulsifier. Food Hydrocoll. 2018, 85, 30–38. [Google Scholar] [CrossRef]
- Kumar, N.; Daniloski, D.; Pratibha; Neeraj; D’Cunha, N.M.; Naumovski, N.; Petkoska, A.T. Pomegranate Peel Extract—A Natural Bioactive Addition to Novel Active Edible Packaging. Food Res. Int. 2022, 156, 111378. [Google Scholar] [CrossRef]
- El Fihry, N.; El Mabrouk, K.; Eeckhout, M.; Schols, H.A.; Hajjaj, H. Physicochemical, Structural, and Functional Characterization of Pectin Extracted from Quince and Pomegranate Peel: A Comparative Study. Int. J. Biol. Macromol. 2024, 256, 127957. [Google Scholar] [CrossRef]
- Vriesmann, L.C.; Petkowicz, C.L.O. Highly Acetylated Pectin from Cacao Pod Husks (Theobroma cacao L.) Forms Gel. Food Hydrocoll. 2013, 33, 58–65. [Google Scholar] [CrossRef]
- Cho, E.-H.; Jung, H.-T.; Lee, B.-H.; Kim, H.-S.; Rhee, J.-K.; Yoo, S.-H. Green Process Development for Apple-Peel Pectin Production by Organic Acid Extraction. Carbohydr. Polym. 2019, 204, 97–103. [Google Scholar] [CrossRef]
Extractive Conditions | Apple | Pomegranate Peel |
---|---|---|
Time (min) | 120 | 20 |
Temperature range (°C) | 24–78 | 28–39 |
pH a | 3.30 | 3.95 |
Water to fresh biomass ratio (L/kg) | 0.5 | 2.33 |
Energy (kWh) a | 12.96 | 2.56 |
Units | P-ps | A-ps | ||
---|---|---|---|---|
Sugars | Arabinose | % μg sugar/μg TOT | 28.8 ± 1.1 | 18.1 ± 0.7 |
µg/mg | 86.6 ± 12.8 | 62.1 ± 10.8 | ||
Galactose | % μg sugar/μg TOT | 26.6 ± 0.3 | 7.4 ± 0.6 | |
µg/mg | 79.7 ± 10.6 | 25.3 ± 4.7 | ||
Galacturonic acid | % μg sugar/μg TOT | 30.5 ± 3.0 | 65.1 ± 1.3 | |
µg/mg | 91.5 ± 14.7 | 222.8 ± 28.8 | ||
Glucose | % μg sugar/μg TOT | 4.6 ± 1.2 | 4.4 ± 0.6 | |
µg/mg | 13.7 ± 2.7 | 15.1 ± 3.6 | ||
Mannose | % μg sugar/μg TOT | 1.6 ± 0.4 | 0.6 ± 0.1 | |
µg/mg | 4.9 ± 1.4 | 2.0 ± 0.3 | ||
Rhamnose | % μg sugar/μg TOT | 5.1 ± 0.5 | 3.4 ± 0.4 | |
µg/mg | 15.2 ± 2.6 | 11.9 ± 3.1 | ||
Xylose | % μg sugar/μg TOT | 2.8 ± 0.6 | 1.08 ± 0.02 | |
µg/mg | 8.3 ± 1.6 | 3.7 ± 0.5 | ||
Rha/GalA | - | 0.167 | 0.053 | |
MW | KDa | 805–348 | >805; 805–348 | |
DE | DM | % mol methanol/mol GalA | 84.1 ± 2.2 | 74.2 ± 2.3 |
DA | % mol acetic acid/mol GalA | 21.2 ± 1.0 | 3.2 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Agostino, S.; Cecchi, L.; Khatib, M.; Domizio, P.; Zoccatelli, G.; Civa, V.; Mainente, F.; Breschi, C.; Ugolini, T.; Meneguzzo, F.; et al. 1H-NMR, HPSEC-RID, and HPAEC-PAD Characterization of Polysaccharides Extracted by Hydrodynamic Cavitation from Apple and Pomegranate By-Products for Their Valorization: A Focus on Pectin. Processes 2024, 12, 2113. https://doi.org/10.3390/pr12102113
D’Agostino S, Cecchi L, Khatib M, Domizio P, Zoccatelli G, Civa V, Mainente F, Breschi C, Ugolini T, Meneguzzo F, et al. 1H-NMR, HPSEC-RID, and HPAEC-PAD Characterization of Polysaccharides Extracted by Hydrodynamic Cavitation from Apple and Pomegranate By-Products for Their Valorization: A Focus on Pectin. Processes. 2024; 12(10):2113. https://doi.org/10.3390/pr12102113
Chicago/Turabian StyleD’Agostino, Silvia, Lorenzo Cecchi, Mohamad Khatib, Paola Domizio, Gianni Zoccatelli, Valentina Civa, Federica Mainente, Carlotta Breschi, Tommaso Ugolini, Francesco Meneguzzo, and et al. 2024. "1H-NMR, HPSEC-RID, and HPAEC-PAD Characterization of Polysaccharides Extracted by Hydrodynamic Cavitation from Apple and Pomegranate By-Products for Their Valorization: A Focus on Pectin" Processes 12, no. 10: 2113. https://doi.org/10.3390/pr12102113
APA StyleD’Agostino, S., Cecchi, L., Khatib, M., Domizio, P., Zoccatelli, G., Civa, V., Mainente, F., Breschi, C., Ugolini, T., Meneguzzo, F., Zabini, F., Tagliavento, L., Mulinacci, N., & Zanoni, B. (2024). 1H-NMR, HPSEC-RID, and HPAEC-PAD Characterization of Polysaccharides Extracted by Hydrodynamic Cavitation from Apple and Pomegranate By-Products for Their Valorization: A Focus on Pectin. Processes, 12(10), 2113. https://doi.org/10.3390/pr12102113