Analysis of Aromatic Fraction of Sparkling Wine Manufactured by Second Fermentation and Aging in Bottles Using Different Types of Closures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Closures and Wine Second Fermentation
2.2. Extraction of Volatile Compounds
- First, the desorption tube filled with extracted compounds was heated inside the desorption unit at a certain temperature and for a certain time in order to desorb the analytes adsorbed during tube filling and focus them into a cold trap (or desorption trap). Helium gas was the carrier gas used in split-less mode [42]. Stainless-steel thermal desorption tubes (6 mm O.D. × 90 mm long, 5 mm I.D., Markes International Limited, Pontyclun, UK) were used in this study. Tubes were packed with 200 mg of Tenax® TA supplied by Ingenieria Analitica, S.L (Barcelona, Spain), a porous polymer resin based on 2,6-diphenylene oxide with a particle size of 20–35 mesh, which was designed for trapping volatile and semi-volatile organic compounds from air [43].
- Then, the desorption trap was heated to a chosen temperature at the maximum heating rate to introduce the retained analytes into the chromatographic column.
- The desorption tubes filled with extracted compounds were obtained following a procedure developed in this study. The designed system is shown in Figure 1.
2.3. Compositional Data Analysis
3. Results
3.1. Extraction of Aromatic Compounds versus Type of Closure
3.2. Effect of the Type of Closure through Compositional Data Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Extracted Compounds | cc1 | cc2 | cc3 | cc4 | Cork 1 | Cork 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPME | TD | SPME | TD | SPME | TD | SPME | TD | SPME | TD | SPME | TD | |
Acids | ||||||||||||
3-Hydroxydodecanoic acid | 0.58 | 0.7 | 1.07 | 0.56 | 0.95 | 0.97 | ||||||
3-Methyl-2-propionyl-benzoic acid | 0.4 | |||||||||||
Acetic acid | 1.25 | 1.81 | ||||||||||
Alkynyl Stearic Acid | 1.19 | 1.87 | 1.53 | |||||||||
Aminomethanesulfonic acid | 1.08 | 1.26 | ||||||||||
Anticopalic acid | 1.19 | |||||||||||
Decanoic acid | 0.67 | 0.83 | 0.52 | 1.17 | 1.85 | |||||||
Dimethylcaffeic acid | 1.6 | 0.61 | ||||||||||
L-Cysteic acid | 0.46 | 0.7 | ||||||||||
Octanoic acid | 0.39 | 0.58 | 0.46 | 0.43 | 2.55 | 0.92 | 0.7 | |||||
Oleic Acid | 0.64 | |||||||||||
Palmitelaidic acid | 0.34 | |||||||||||
Paullinic acid | 0.61 | |||||||||||
Succinic acid | 0.23 | 1.67 | ||||||||||
Undecanoic acid | 0.36 | |||||||||||
Alcohol | ||||||||||||
2,2,4-Trimethyl-3-(3,8,12,16-tetramethyl-heptadeca-3,7,11,15-tetraenyl)-cyclohexanol | 0.95 | |||||||||||
2-Propanediol | ||||||||||||
10-Methyl-E-11-tridecen-1-ol propionate | 0.59 | 2.56 | 2.23 | |||||||||
1-Butanol | 3.75 | |||||||||||
1-Hexanol | 0.99 | 0.77 | 1.26 | 1.37 | 1.09 | |||||||
15-tetraenyl)-cyclohexanol | ||||||||||||
2-Hydrazinoethanol | 2.34 | |||||||||||
1-Tetradecenol | 0.58 | |||||||||||
Ethanol | 0.65 | |||||||||||
Isoamyl alcohol | 43.2 | 1.42 | 32.7 | 20.7 | 34.5 | 2.82 | 47.8 | 1.3 | 49.7 | |||
Phenylethyl Alcohol | 0.84 | 0.66 | 1.15 | 0.65 | 1.15 | 0.32 | 1.29 | 1.12 | 3.73 | 1.58 | 2.59 | 2.57 |
Alkanes | ||||||||||||
5-methyl-1-Hexane | 2.27 | |||||||||||
3-Chloropentane | 1.27 | |||||||||||
Dotriacontane | 0.62 | |||||||||||
Hexadecane | 0.78 | 0.68 | 0.93 | |||||||||
Hexatriacontane | 0.43 | |||||||||||
n-Hexane | 0.43 | 4.83 | ||||||||||
Nonacosane | 0.82 | |||||||||||
Octadecane | 0.38 | 1.56 | ||||||||||
Octathiocane | 0.78 | 2.23 | ||||||||||
Pentacosane | 0.8 | 0.46 | ||||||||||
Tetratriacontane | 0.62 | |||||||||||
Vinyl decanoate | 0.48 | |||||||||||
Ester | ||||||||||||
10-Undecenoic acid ethyl ester | 0.99 | |||||||||||
Butyl ethyl succinate | 3.37 | 1.56 | ||||||||||
Decyl oleate | 0.96 | |||||||||||
Diethyl Phthalate | 0.44 | 0.71 | 1.29 | 1.19 | ||||||||
Diethyl succinate | 2.08 | 1.62 | 1.6 | 1.81 | 1.34 | 2.2 | 1 | 2.26 | 2.18 | 2.36 | 3.03 | 2.89 |
Ethyl 9-decenoate | 1.22 | 1.36 | 0.82 | 0.85 | 1.16 | |||||||
Ethyl 9-oxononanoate | 0.9 | |||||||||||
Ethyl Acetate | 4.96 | 2.92 | 3.14 | 6.25 | 3.65 | 2.3 | 4.1 | |||||
Ethyl arachidate | 9.81 | 1.41 | 0.52 | 1.76 | 1.17 | 6.22 | 2.46 | 4.24 | 2.46 | |||
Ethyl butyrate | 1.04 | 0.7 | 0.59 | 1.53 | 1.13 | 1.05 | ||||||
Ethyl cholate | 0.69 | |||||||||||
Ethyl decanoate | 4.99 | 1.17 | 7.28 | 1.96 | 4.61 | 1.48 | 6.05 | 2.7 | 14.5 | 2.17 | 8.12 | 2.29 |
Ethyl hexanoate | 7.99 | 1.07 | 6.11 | 2.25 | 5.35 | 2.29 | 4.86 | 3.35 | 10.9 | 4.03 | 9.3 | 0.88 |
Ethyl hexyl butanedioate | 1.22 | |||||||||||
Ethyl octanoate | 17.4 | 7.81 | 2.99 | 3.75 | 8.43 | 11 | 30.9 | 7.45 | 49.5 | 5.81 | ||
Ethyl palmitate | 0.5 | |||||||||||
Ethyl stearate | 2.4 | |||||||||||
Ethyl trans-4-decenoate | 0.76 | 0.85 | 0.54 | 0.66 | 0.72 | 2 | 0.8 | |||||
Hexyl chloroformate | 1.33 | |||||||||||
Isoamyl lactate | 2.79 | |||||||||||
Isopropyl palmitate | 0.41 | 0.65 | 0.79 | 0.62 | ||||||||
Methyl 2 4-dimethylhexanoate | 30.9 | 1.88 | 42.1 | 4.05 | 40.7 | 43.6 | 4.07 | |||||
Methyl pentyl carbonate | 3.59 | |||||||||||
Nonanoic acid 5-methyl-ethyl ester | 1.05 | 1.21 | 1.55 | 2.34 | 1.51 | |||||||
Oryctalure | 0.46 | |||||||||||
Ether | ||||||||||||
1-Methyl-1-silacyclopentan-1-ol | 0.28 | |||||||||||
Oxirane 2-(1 1-dimethylethyl)-3-ethyl | 1.98 | 22.8 | 1.43 | 30.8 | 2 | 33.3 | 2.09 | 4.32 | 1.98 | |||
ketone | ||||||||||||
2,3,4,5,6,6-hexamethylcyclohexa-2,4-dien-1-one | 1.7 | |||||||||||
2,2-dimethyl-5-phenylfuran-3-one | 0.61 | 0.61 | ||||||||||
alpha-Ionone | 1.74 | 0.32 | 1.77 | 0.53 | 0.98 | 0.53 | 1.02 | 0.83 | 4.16 | 2.35 | ||
Caprolactone | 0.61 | |||||||||||
Terpenes | ||||||||||||
D-Limonene | 0.32 | |||||||||||
Friedelin | 0.62 | 0.95 | 1.96 | |||||||||
Squalene | 0.99 | 0.73 | 1.3 | 3.36 | 1.19 | 2.96 | 2.02 | |||||
TDN | 0.59 | 0.18 | 0.48 | 1.94 | 1.27 | 1.07 | 0.69 | |||||
Other | ||||||||||||
2-amino-4,6-dihydro-4,4,6,6-tetramethyl-Thieno[2,3-c]furan-3-carbonitrile | 0.38 | |||||||||||
(2-Aziridinylethyl)amine | 1.14 | 1.79 | ||||||||||
1,1,5-Trimethyl-1,2-dihydronaphthalene | ||||||||||||
1-[3-hydroxybenzyl]-6-methoxy-3,4-Dihydroisoquinoline | 1.15 | 1.56 | 0.64 | 0.79 | 2.19 | |||||||
12-O-Acetylingol 8-tiglate | 0.74 | |||||||||||
1H-2-Indenone,2,4,5,6,7,7a-hexahydro-3-(1-Methylethyl)-7a-methyl | 0.88 | |||||||||||
1-Octadecyne | 0.67 | |||||||||||
2,3,4-Trimethyllevoglucosan | 4.48 | 3.23 | ||||||||||
2,4-dimethyl-1,3-Dioxane | 0.51 | 1.69 | ||||||||||
2-Bromooctadecanal | 0.51 | 1.09 | 0.48 | 0.44 | 0.79 | 0.44 | ||||||
2-Myristynoyl pantetheine | 0.25 | |||||||||||
4-(2,3,6-Trimethylphenyl)-1,3-butadiene | 0.41 | 0.57 | 1.02 | 0.34 | 2.05 | 1.16 | ||||||
6,7-Dimethoxy-1,4-dimethyl-1,3-quinoxalinedithione | 1.46 | |||||||||||
Benzaldehyde | 0.41 | |||||||||||
Bis(2-ethylhexyl) phthalate | 1.93 | 1.76 | ||||||||||
Caprylic anhydride | 6.66 | 18.4 | 5.57 | 1.66 | 1.45 | |||||||
Carbon dioxide | 4.86 | 2.52 | 2.7 | 3.42 | ||||||||
Corlumine | 0.39 | 0.54 | ||||||||||
Dimethylamine | 6.31 | 14 | 4.68 | 2.01 | 2.32 | |||||||
Emulphor | 1.1 | 0.92 | ||||||||||
Hydroxyurea | 2.52 | |||||||||||
Isoflavene | 0.76 | |||||||||||
Lactamide | 2.69 | 4.78 | 14.8 | 3.61 | 6.83 | 4.53 | ||||||
Laudanosine | 0.56 | |||||||||||
Longifolenaldehyde | 3 | |||||||||||
Methoxy-phenyl-Oxime | 0.67 | 1.03 | 0.25 | 0.71 | 1.11 | |||||||
N-Methylcalycotomine | 0.12 | |||||||||||
Paromomycin | 0.34 | |||||||||||
p-Di(cis-styryl)benzene | 2.61 | 0.85 | ||||||||||
Phenol | 0.68 |
Code | Global Data | Cork Stopper | Screw Cap |
---|---|---|---|
0.008178 | 0.006604 | 0.005742 | |
0.017714 | 0.003840 | 0.025362 | |
0.005436 | 0.007253 | 0.002908 | |
0.004873 | 0.000458 | 0.010966 | |
0.110776 | 0.043172 | 0.115416 | |
0.000325 | 0.000009 | 0.001414 | |
0.239144 | 0.105512 | 0.232965 | |
0.302983 | 0.100229 | 0.344981 | |
0.033609 | 0.523776 | 0.004749 | |
0.021187 | 0.005937 | 0.026394 | |
0.004123 | 0.008483 | 0.001745 | |
0.075963 | 0.121259 | 0.036875 | |
0.009156 | 0.005323 | 0.007681 | |
0.031359 | 0.004647 | 0.055165 | |
0.074170 | 0.032247 | 0.072831 | |
0.061003 | 0.031251 | 0.054808 |
Code | Global Center | Cork 1 | Cork 2 | CC1 | CC2 | CC3 | CC4 |
---|---|---|---|---|---|---|---|
0.008178 | 0.009134 | 0.004938 | 0.003287 | 0.015248 | 0.004281 | 0.004441 | |
0.017714 | 0.004912 | 0.003069 | 0.030482 | 0.018456 | 0.021904 | 0.029430 | |
0.005436 | 0.006814 | 0.007556 | 0.002265 | 0.005396 | 0.001522 | 0.003370 | |
0.004873 | 0.000910 | 0.000251 | 0.006031 | 0.003304 | 0.014947 | 0.042555 | |
0.110776 | 0.049711 | 0.037772 | 0.139048 | 0.099106 | 0.103049 | 0.109530 | |
0.000325 | 0.000033 | 0.000003 | 0.014368 | 0.000258 | 0.000472 | 0.002000 | |
0.239144 | 0.119351 | 0.093734 | 0.160628 | 0.261992 | 0.279475 | 0.219533 | |
0.302983 | 0.089439 | 0.109111 | 0.392126 | 0.300740 | 0.322618 | 0.326333 | |
0.033609 | 0.482210 | 0.555137 | 0.003440 | 0.023763 | 0.001781 | 0.003061 | |
0.021187 | 0.007054 | 0.005056 | 0.019705 | 0.023202 | 0.026922 | 0.034560 | |
0.004123 | 0.012845 | 0.005869 | 0.000831 | 0.007845 | 0.000881 | 0.001413 | |
0.075963 | 0.125506 | 0.116244 | 0.022926 | 0.074176 | 0.030249 | 0.031507 | |
0.009156 | 0.010934 | 0.002835 | 0.002196 | 0.012344 | 0.012180 | 0.009241 | |
0.031359 | 0.008004 | 0.002879 | 0.070237 | 0.033142 | 0.069526 | 0.050158 | |
0.074170 | 0.037497 | 0.027978 | 0.073222 | 0.066240 | 0.061168 | 0.083130 | |
0.061003 | 0.035645 | 0.027566 | 0.059207 | 0.054787 | 0.049024 | 0.049738 |
References
- Riu Aumatell, M.; Torrens, J.; Buxaderas Sánchez, S.; López Tamames, E. Cava (Spanish Sparkling Wine) Aroma: Composition and Determination Methods; Torrero, D.M., Cortés, A., Mariño, E.L., Eds.; Transworld Research Network: Kerala, India, 2013; Volume 3, ISBN 978-81-7895-605-3. [Google Scholar]
- Alexandre, H.; Michèle, G.-B. Yeast Autolysis in Sparkling Wine—A Review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Torrens, J.; Urpí, P.; Riu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Different Commercial Yeast Strains Affecting the Volatile and Sensory Profile of Cava Base Wine. Int. J. Food Microbiol. 2008, 124, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Verzeletti, A.; Echeverrigaray, S.; Cardoso, A.; Vanderlinde, R.; Delamare, A.P.L. Evolution of Aromatic Compounds during the Second Fermentation and Aging of Brazilian Sparkling Wine. In Proceedings of the BIO Web of Conferences, Paris-Sud, France, 18–19 November 2016; Volume 7, p. 02019. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.Á.; Martínez-Rodríguez, A.; Pueyo, E.; Moreno-Arribas, M.V. Chemical and biochemical features involved in sparkling wine production: From a traditional to an improved winemaking technology. Trends Food Sci. Technol. 2009, 20, 289–299. [Google Scholar] [CrossRef]
- Gallardo-Chacon, J.; Vichi, S.; Lopez-Tamames, E.; Buxaderas, S. Analysis of Sparkling Wine Lees Surface Volatiles by Optimized Headspace Solid-Phase Microextraction. J. Agric. Food Chem. 2009, 57, 3279–3285. [Google Scholar] [CrossRef]
- Jolly, N.; Minnaar, P.; Booyse, M.; Gerber, P. Bottle Fermented Sparkling Wine: Cork or Crown Closures during the Second Fermentation? S. Afr. J. Enol. Vitic. 2021, 42, 136–153. [Google Scholar] [CrossRef]
- Furtado, I.; Lopes, P.; Oliveira, A.S.; Amaro, F.; Bastos, M.D.L.; Cabral, M.; Guedes de Pinho, P.; Pinto, J. The Impact of Different Closures on the Flavor Composition of Wines during Bottle Aging. Foods 2021, 10, 2070. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Caillé, S.; Samson, A.; Salmon, J.M. Impact of eight closures in controlled industrial conditions on the shelf life of two (red and rosé) wines. OENO One 2017, 51, 387–399. [Google Scholar] [CrossRef]
- Azevedo, J.; Fernandes, I.; Lopes, P.; Roseira, I.; Cabral, M.; Mateus, N.; Freitas, V. Migration of Phenolic Compounds from Different Cork Stoppers to Wine Model Solutions: Antioxidant and Biological Relevance. Eur. Food Res. Technol. 2014, 239, 951–960. [Google Scholar] [CrossRef]
- Hopfer, H.; Nelson, J.; Mitchell, A.E.; Heymann, H.; Ebeler, S.E. Profiling the trace metal composition of wine as a function of storage temperature and packaging type. J. Anal. At. Spectrom. 2013, 28, 1288–1291. [Google Scholar] [CrossRef]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, Capabilities and Applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef]
- Campos, P.; Daly-Hassen, H.; Ovando, P. Cork Oak Forest Management in Spain and Tunisia: Two Case Studies of Conflicts between Sustainability and Private Income. Int. For. Rev. 2007, 9, 610–626. [Google Scholar] [CrossRef]
- Liger-Belair, G.; Cilindre, C. Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines. Annu. Rev. Anal. Chem. 2021, 14, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H. Chemical Composition and Variability of Cork from Quercus suber L. Wood Sci. Technol. 1988, 22, 211–218. [Google Scholar] [CrossRef]
- Duarte, A.P.; Bordado, J.C. Cork—A renewable raw material: Forecast of industrial potential and development priorities. Front. Mater. 2015, 2, 2. [Google Scholar] [CrossRef]
- Gil, L. Cork: A strategic material. Front. Chem. 2014, 2, 16. [Google Scholar] [CrossRef]
- Amaro, F.; Almeida, J.; Oliveira, A.S.; Furtado, I.; de Lourdes Bastos, M.; de Pinho, P.G.; Pinto, J. Impact of Cork Closures on the Volatile Profile of Sparkling Wines during Bottle Aging. Foods 2022, 11, 293. [Google Scholar] [CrossRef]
- Pinto, J.; Oliveira, A.S.; Lopes, P.; Roseira, I.; Cabral, M.; de Lourdes Bastos, M.; de Pinho, P.G. Characterization of Chemical Compounds Susceptible to Be Extracted from Cork by the Wine Using GC-MS and 1H NMR Metabolomic Approaches. Food Chem. 2019, 271, 639–649. [Google Scholar] [CrossRef]
- Oliveira, G.; Costa, A. How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. For. Ecol. Manag. 2012, 270, 257–272. [Google Scholar] [CrossRef]
- Kurz-Besson, C.; Otieno, D.; Vale, R.L.D.; Siegwolf, R.; Schmidt, M.; Herd, A.; Nogueira, C.; David, T.S.; David, J.S.; Tenhunen, J.; et al. Hydraulic Lift in Cork Oak Trees in a Savannah-Type Mediterranean Ecosystem and Its Contribution to the Local Water Balance. Plant Soil 2006, 282, 361–378. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Ribeiro, N.A.; Surovy, P.; Ferreira, A.G. Economic Implications of Different Cork Oak Forest Management Systems. Int. J. Sustain. Soc. 2008, 1, 149. [Google Scholar] [CrossRef]
- Bosch-Fusté, J.; Riu-Aumatell, M.; Guadayol, J.; Caixach, J.; Lopeztamames, E.; Buxaderas, S. Volatile Profiles of Sparkling Wines Obtained by Three Extraction Methods and Gas Chromatography–Mass Spectrometry (GC–MS) Analysis. Food Chem. 2007, 105, 428–435. [Google Scholar] [CrossRef]
- Francioli, S.; Guerra, M.; López-Tamames, E.; Guadayoi, J.M.; Caixach, J. Aroma of sparkling wines by headspace/solid phase microextraction and gas chromatography/mass spectrometry. Am. J. Enol. Vitic. 1999, 50, 404–408. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Bosch-Fusté, J.; López-Tamames, E.; Buxaderas, S. Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees. Food Chem. 2006, 95, 237–242. [Google Scholar] [CrossRef]
- Torrens, J.; Riu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Assessment of Volatile and Sensory Profiles between Base and Sparkling Wines. J. Agric. Food Chem. 2010, 58, 2455–2461. [Google Scholar] [CrossRef]
- Coelho, E.; Coimbra, M.A.; Nogueira, J.M.F.; Rocha, S.M. Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Anal. Chim. Acta 2009, 635, 214–221. [Google Scholar] [CrossRef]
- Herrero, P.; Sáenz-Navajas, P.; Culleré, L.; Ferreira, V.; Chatin, A.; Chaperon, V.; Litoux-Desrues, F.; Escudero, A. Chemosensory characterization of Chardonnay and Pinot Noir base wines of Champagne. Two very different varieties for a common product. Food Chem. 2016, 207, 239–250. [Google Scholar] [CrossRef]
- Culbert, J.A.; Ristic, R.; Ovington, L.A.; Saliba, A.J.; Wilkinson, K.L. Influence of Production Method on the Sensory Profile and Consumer Acceptance of Australian Sparkling White Wine Styles: Sensory Profiles of Australian Sparkling Wines. Aust. J. Grape Wine Res. 2017, 23, 170–178. [Google Scholar] [CrossRef]
- Bingman, M.T.; Stellick, C.E.; Pelkey, J.P.; Scott, J.M.; Cole, C.A. Monitoring cider aroma development throughout the fermentation process by headspace solid phase microextraction (HS-SPME) gas chromatography–mass spectrometry (GC-MS) analysis. Beverages 2020, 6, 40. [Google Scholar] [CrossRef]
- Madrera, R.R.; Hevia, A.G.; García, N.P.; Valles, B.S. Evolution of aroma compounds in sparkling ciders. LWT-Food Sci. Technol. 2008, 41, 2064–2069. [Google Scholar] [CrossRef]
- Ocvirk, M.; Mlinarič, N.K.; Košir, I.J. Comparison of Sensory and Chemical Evaluation of Lager Beer Aroma by Gas Chromatography and Gas Chromatography/Mass Spectrometry. J. Sci. Food Agric. 2018, 98, 3627–3635. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Miró, P.; Serra-Cayuela, A.; Buxaderas, S.; López-Tamames, E. Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC-MS. Food Res. Int. 2014, 57, 196–202. [Google Scholar] [CrossRef]
- Minnaar, P.P.; Gerber, P.; Booyse, M. Phenolic Compounds in Cork-Closed Bottle-Fermented Sparkling Wines. S. Afr. J. Enol. Vitic. 2021, 42, 19–24. [Google Scholar] [CrossRef]
- Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Pati, S.; Tufariello, M.; Crupi, P.; Coletta, A.; Grieco, F.; Losito, I. Quantification of volatile compounds in wines by HS-SPME-GC/MS: Critical issues and use of multivariate statistics in method optimization. Processes 2021, 9, 662. [Google Scholar] [CrossRef]
- Tufariello, M.; Pati, S.; Palombi, L.; Grieco, F.; Losito, I. Use of multivariate statistics in the processing of data on wine volatile compounds obtained by HS-SPME-GC-MS. Foods 2022, 11, 910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Q.; Li, Y.; Liu, S.; Tu, Q.; Yuan, C. Characterization of wine volatile compounds from different regions and varieties by HS-SPME/GC-MS coupled with chemometrics. Curr. Res. Food Sci. 2023, 6, 100418. [Google Scholar] [CrossRef]
- Cheng, Z.; Mannion, D.T.; O’Sullivan, M.G.; Miao, S.; Kerry, J.P.; Kilcawley, K.N. Comparison of automated extraction techniques for volatile analysis of whole milk powder. Foods 2021, 10, 2061. [Google Scholar] [CrossRef]
- Salinas, M.R.; Alonso, G.L.; Esteban-Infantes, F.J. Adsorption-Thermal Desorption Gas Chromatography Applied to the Determination of Wine Aromas. J. Agric. Food Chem. 1994, 42, 1328–1331. [Google Scholar] [CrossRef]
- Baltussen, E.; Cramers, C.; Sandra, P. Sorptive Sample Preparation—A Review. Anal. Bioanal. Chem. 2002, 373, 3–22. [Google Scholar] [CrossRef]
- Woolfenden, E. Thermal Desorption Gas Chromatography; Elsevier: Amsterdam, The Netherlands, 2021; pp. 267–323. [Google Scholar]
- Jové, P.; Pareras, A.; de Nadal, R.; Verdum, M. Development and Optimization of a Quantitative Analysis of Main Odorants Causing off Flavours in Cork Stoppers Using Headspace Solid-phase Microextraction Gas Chromatography Tandem Mass Spectrometry. J. Mass Spectrom. 2021, 56, e4728. [Google Scholar] [CrossRef]
- Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 1982, 44, 139–160. [Google Scholar] [CrossRef]
- Korhoňová, M.; Hron, K.; Klimčíková, D.; Müller, L.; Bednář, P.; Barták, P. Coffee aroma—Statistical analysis of compositional data. Talanta 2009, 80, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modeling and Analysis of Compositional Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Martín Fernández, J.A.; Daunis-i-Estadella, P.; Figueras, G.M.I. On the interpretation of differences between groups for compositional data. SORT Stat. Oper. Res. Trans. 2015, 39, 231–252. [Google Scholar] [CrossRef]
- Mateu-Figueras, G.; Pawlowsky-Glahn, V.; Egozcue, J.J. The normal distribution in some constrained sample spaces. SORT Stat. Oper. Res. Trans. 2013, 37, 29–56. [Google Scholar] [CrossRef]
- Louw, L.; Roux, K.; Tredoux, A.; Tomic, O.; Naes, T.; Nieuwoudt, H.H.; van Rensburg, P. Characterization of Selected South African Young Cultivar Wines Using FTMIR Spectroscopy, Gas Chromatography, and Multivariate Data Analysis. J. Agric. Food Chem. 2009, 57, 2623–2632. [Google Scholar] [CrossRef]
- Makris, D.P.; Kallithraka, S.; Mamalos, A. Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta 2006, 70, 1143–1152. [Google Scholar] [CrossRef]
- Shimizu, H.; Akamatsu, F.; Kamada, A.; Koyama, K.; Iwashita, K.; Goto-Yamamoto, N. Variation in the mineral composition of wine produced using different winemaking techniques. J. Biosci. Bioeng. 2020, 130, 166–172. [Google Scholar] [CrossRef]
- Palarea-Albaladejo, J.; Martín-Fernández, J.A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015, 143, 85–96. [Google Scholar] [CrossRef]
- Díaz-Regañon, D.H.; Salinas, R.; Masoud, T.; Alonso, G. Adsorption-thermal desorption-gas chromatography applied to volatile compounds of Madrid region wines. J. Food Compos. Anal. 1998, 11, 54–69. [Google Scholar] [CrossRef]
- Panighel, A.; Flamini, R. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Molecules 2014, 19, 21291–21309. [Google Scholar] [CrossRef]
- Whiton, R.S.; Zoecklein, B.W. Optimization of headspace solid-phase microextraction for analysis of wine aroma compounds. Am. J. Enol. Vitic. 2000, 51, 379–382. [Google Scholar] [CrossRef]
- Ziółkowska, A.; Wąsowicz, E.; Jeleń, H.H. Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods. Food Chem. 2016, 213, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef]
- Benucci, I.; Cerreti, M.; Maresca, D.; Mauriello, G.; Esti, M. Yeast cells in double layer calcium alginate–chitosan microcapsules for sparkling wine production. Food Chem. 2019, 300, 125174. [Google Scholar] [CrossRef]
- Jagatić Korenika, A.-M.; Preiner, D.; Tomaz, I.; Jeromel, A. Volatile profile characterization of Croatian commercial sparkling wines. Molecules 2020, 25, 4349. [Google Scholar] [CrossRef]
- Voce, S.; Škrab, D.; Vrhovsek, U.; Battistutta, F.; Comuzzo, P.; Sivilotti, P. Compositional Characterization of Commercial Sparkling Wines from Cv. RibollaGialla Produced in Friuli Venezia Giulia. Eur. Food Res. Technol. 2019, 245, 2279–2292. [Google Scholar] [CrossRef]
- Polášková, P.; Herszage, J.; Ebeler, S.E. Wine flavor: Chemistry in a glass. Chem. Soc. Rev. 2008, 37, 2478–2489. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Li, P.; Lv, Y.; Nan, H.; Wen, L.; Wang, Z. Research progress of wine aroma components: A critical review. Food Chem. 2023, 402, 134491. [Google Scholar] [CrossRef] [PubMed]
- Cichewicz, R.H.; Kouzi, S.A. Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention and Treatment of Cancer and HIV Infection. Med. Res. Rev. 2004, 24, 90–114. [Google Scholar] [CrossRef]
- Francioli, S.; Torrens, J.; Riu-Aumatell, M.; López-Tamames, E.; Buxaderas, S. Volatile compounds by SPME-GC as age markers of sparkling wines. Am. J. Enol. Vitic. 2003, 54, 158–162. [Google Scholar] [CrossRef]
- Dziadas, M.; Jeleń, H.H. Analysis of terpenes in white wines using SPE–SPME–GC/MS approach. Anal. Chim. Acta 2010, 677, 43–49. [Google Scholar] [CrossRef]
- Genovese, A.; Lamorte, S.A.; Gambuti, A.; Moio, L. Aroma of Aglianico and Uva di Troia grapes by aromatic series. Food Res. Int. 2013, 53, 15–23. [Google Scholar] [CrossRef]
- Caliari, V.; Burin, V.M.; Rosier, J.P.; BordignonLuiz, M.T. Aromatic Profile of Brazilian Sparkling Wines Produced with Classical and Innovative Grape Varieties. Food Res. Int. 2014, 62, 965–973. [Google Scholar] [CrossRef]
- Torchio, F.; RíoSegade, S.; Gerbi, V.; Cagnasso, E.; Giordano, M.; Giacosa, S.; Rolle, L. Changes in varietal volatile composition during shelf-life of two types of aromatic red sweet Brachetto sparkling wines. Food Res. Int. 2012, 48, 491–498. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The actual and potential aroma of winemaking grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Jin, Z.; Lan, Y.; Rao, J.; Chen, B. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chem. 2019, 280, 83–95. [Google Scholar] [CrossRef]
- Ancín-Azpilicueta, C.; Jiménez-Moreno, N.; Moler, J.A.; Nieto-Rojo, R.; Urmeneta, H. Effects of Reduced Levels of Sulfite in Wine Production Using Mixtures with Lysozyme and Dimethyl Dicarbonate on Levels of Volatile and Biogenic Amines. Food Addit. Contam. Part A 2016, 33, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Song, Y.Y.; Dang, G.F.; Ye, D.Q.; Gong, X.; Liu, Y.L. Effect of wine closures on the aroma properties of Chardonnay wines after four years of storage. S. Afr. J. Enol. Vitic. 2015, 36, 296–303. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kang, B.-S.; Park, H.-J. Effect of Oxygen on Volatile and Sensory Characteristics of Cabernet Sauvignon during Secondary Shelf Life. J. Agric. Food Chem. 2011, 59, 11657–11666. [Google Scholar] [CrossRef]
- Anderson, M.J. A New Method for Non-parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel Test in the Face of Heterogeneous Dispersions: What Null Hypothesis Are You Testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
Type | Code | Closure Description |
---|---|---|
Cork stopper | Cork 1 | Agglomerated cork stopper with 31 mm of diameter |
Cork stopper | Cork 2 | Agglomerated cork stopper with 32 mm of diameter |
Screw cap | CC1 | Polyethylene screw cap consists of a cell polyethylene foam disc with a very fine structure. |
Screw cap | CC2 | Saranex is composed of PE covered on both sides with PVDC |
Screw cap | CC3 | Daraform is a non- polyvinylidene (PVC) compound based on polyolefinic raw materials |
Screw cap | CC4 | Saranex + araldite is composed of PE covered on both sides with PVDC and with the addition of an additional glue such as Varnishe (Araldite) |
Base Wine | |||
---|---|---|---|
Total acidity by sulfuric (g L−1) | 4.05 | Density (g cm3) | 998.9 |
Sugar (GAP) (g L−1) | 23.1 | Turbidity (NTU) | 35.9 |
NFA (mg L−1) | 63.0 | Free SO2 (mg L−1) | 7 |
Free SO2 (mg L−1) | 8.0 | Temperature (°C) | 17 |
Sucrose | 21.3 |
Code | Volatile Compounds | % Zeros Replaced |
---|---|---|
1,1,5-Trimethyl-1,2-dihydronaphthalene | 75.7% | |
3,4-Dihydroisoquinoline,1-[3-hydroxybenzyl]-6-methoxy- | 62.2% | |
4-(2,3,6-Trimethylphenyl)-1,3-butadiene | 70.3% | |
Carbon dioxide | 70.3% | |
Diethyl succinate | 0.0% | |
Dimethylamine | 70.3% | |
Ethyl 9-decenoate | 13.5% | |
Ethyl hexanoate | 0.0% | |
Ethyl octanoate | 56.8% | |
Ethyl trans-4-decenoate | 32.4% | |
Isoamyl alcohol | 73.0% | |
Lactamide | 51.4% | |
Octanoic acid | 56.8% | |
Oxirane, 2-(1,1-dimethylethyl)-3-ethyl-cis- | 46.0% | |
Phenylethyl Alcohol | 2.7% | |
alpha-Ionone | 21.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jové, P.; Mateu-Figueras, G.; Bustillos, J.; Martín-Fernández, J.A. Analysis of Aromatic Fraction of Sparkling Wine Manufactured by Second Fermentation and Aging in Bottles Using Different Types of Closures. Processes 2024, 12, 2165. https://doi.org/10.3390/pr12102165
Jové P, Mateu-Figueras G, Bustillos J, Martín-Fernández JA. Analysis of Aromatic Fraction of Sparkling Wine Manufactured by Second Fermentation and Aging in Bottles Using Different Types of Closures. Processes. 2024; 12(10):2165. https://doi.org/10.3390/pr12102165
Chicago/Turabian StyleJové, Patricia, Glòria Mateu-Figueras, Jessica Bustillos, and Josep Antoni Martín-Fernández. 2024. "Analysis of Aromatic Fraction of Sparkling Wine Manufactured by Second Fermentation and Aging in Bottles Using Different Types of Closures" Processes 12, no. 10: 2165. https://doi.org/10.3390/pr12102165
APA StyleJové, P., Mateu-Figueras, G., Bustillos, J., & Martín-Fernández, J. A. (2024). Analysis of Aromatic Fraction of Sparkling Wine Manufactured by Second Fermentation and Aging in Bottles Using Different Types of Closures. Processes, 12(10), 2165. https://doi.org/10.3390/pr12102165