Affordable and Reliable RP-HPLC Method for Verapamil Hydrochloride Quantification in Rabbit Plasma for Pharmacokinetics
Abstract
:1. Introduction
2. Materials and Analytical Methods
2.1. Chemicals and Reagents
2.2. HPLC Instrument Descriptions and Chromatographic Settings
2.3. Standard Solution Preparation Procedures and Quality Control (QC) Samples
2.4. Procedures for VH Extraction from Animal Plasma Samples
2.5. Validation Protocol for the Novel Bio-Analytical Method
2.5.1. Selectivity
2.5.2. Assessment of Lower Limit of Quantitation and Linear Range
2.5.3. Accuracy and Precision
2.5.4. Investigation of Process Efficiency (PE), Extraction Efficiency (EE), and Matrix Effect (ME)
2.5.5. Investigation of Stability Studies
2.6. Pharmacokinetic Application of Bio-Analytical Method
2.6.1. Research Protocol for In Vivo Biological Study
2.6.2. Drug Behavior in the Pharmacokinetic Evaluation
2.7. Analysis and Interpretation of Data
3. Results and Discussions
3.1. Improvement of the Chromatographic Settings
3.2. Validation of Bio-Analytical Method
3.2.1. Selectivity
3.2.2. Investigation of Lower Limit of Quantitation (LLOQ) and Linear Range
3.2.3. Accuracy and Precision
3.2.4. Investigation of Process Efficiency (PE), Extraction Efficiency (EE), and Matrix Effect (ME)
3.2.5. Outcomes of Stability Studies
3.3. Pharmacokinetic Application of Bio-Analytical Method
4. Conclusions
Future Aspects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gumieniczek, A.; Hopkala, H. Development and Validation of a Liquid Chromatographic Method for the Determination of Trandolapril aand Verapamil in Capsules. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 393–400. [Google Scholar] [CrossRef]
- Kirsten, R.; Nelson, K.; Kirsten, D.; Heintz, B. Clinical Pharmacokinetics of Vasodilators: Part I. Clin. Pharmacokinet. 1998, 34, 457–482. [Google Scholar] [CrossRef] [PubMed]
- Lau-Cam, C.A.; Piemontese, D. Simplified Reversed-Phase HPLC Method with Spectrophotometric Detection for the Assay of Verapamil in Rat Plasma. J. Pharm. Biomed. Anal. 1998, 16, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Wang, C.; Lu, W.; Li, W.; Jing, W.; Zhang, J.; Yang, G.; Zeng, A. Comparative Pharmacokinetics of Verapamil and Norverapamil in Normal and Ulcerative Colitis Rats after Oral Administration of Low and High Dose Verapamil by UPLC-MS/MS. Xenobiotica 2020, 50, 713–721. [Google Scholar] [CrossRef]
- Arayne, M.S.; Mirza, A.Z.; Sultana, N. Simultaneous Determination of Gliquidone, Pioglitazone Hydrochloride, and Verapamil in Formulation and Human Serum by RP-HPLC. J. Chromatogr. Sci. 2011, 49, 114–117. [Google Scholar] [CrossRef]
- Barbosa Lima, A.; Ferreira, L.F.; Barbosa, S.L.; de Souza Gil, E.; Amorim Bezerra da Silva, R.; Pio dos Santos, W.T. Selective Determination of Verapamil in Pharmaceutics and Urine Using a Boron-doped Diamond Electrode Coupled to Flow Injection Analysis with Multiple-pulse Amperometric Detection. Electroanalysis 2018, 30, 1880–1885. [Google Scholar] [CrossRef]
- Dethy, J.-M.; De Broux, S.; Lesne, M.; Longstreth, J.; Gilbert, P. Stereoselective Determination of Verapamil and Norverapamil by Capillary Electrophoresis. J. Chromatogr. B Biomed. Sci. App. 1994, 654, 121–127. [Google Scholar] [CrossRef]
- McAllister, R.G.; Howell, S.M. Fluorometric Assay of Verapamil in Biological Fluids and Tissues. J. Pharm. Sci. 1976, 65, 431–432. [Google Scholar] [CrossRef]
- Walash, M.; Belal, F.; El-Enany, N.; Abdelsalam, A. Spectrofluorometric Determination of Verapamil Hydrochloride in Pharmaceutical Preparations and Human Plasma Using Organized Media: Application to Stability Studies. J. AOAC Int. 2006, 89, 1565–1572. [Google Scholar] [CrossRef]
- Mikus, G.; Eichelbaum, M.; Fischer, C.; Gumulka, S.; Klotz, U.; Kroemer, H.K. Interaction of Verapamil and Cimetidine: Stereochemical Aspects of Drug Metabolism, Drug Disposition and Drug Action. J. Pharmacol. Exp. Ther. 1990, 253, 1042–1048. [Google Scholar]
- Pieper, J.A.; Rutledge, D.R. Determination of Verapamil and Its Primary Metabolites In Serum by Ion-Pair Adsorption High-Performance Liquid Chromatography. J. Chromatogr. Sci. 1988, 26, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Jhee, O.H.; Hong, J.W.; Om, A.S.; Lee, M.H.; Lee, W.S.; Shaw, L.M.; Lee, J.-W.; Kang, J.S. Direct Determination of Verapamil in Rat Plasma by Coupled Column Microbore-HPLC Method. J. Pharm. Biomed. Anal. 2005, 37, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Piotrovskii, V.K.; Rumiantsev, D.O.; Metelitsa, V.I. Ion-Exchange High-Performance Liquid Chromatography in Drug Assay in Biological Fluids. J. Chromatogr. B Biomed. Sci. App. 1983, 275, 195–200. [Google Scholar] [CrossRef]
- Brandšteterová, E.; Wainer, I.W. Achiral and Chiral High-Performance Liquid Chromatography of Verapamil and Its Metabolites in Serum Samples. J. Chromatogr. B Biomed. Sci. App. 1999, 732, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, A.; Chiap, P.; Hubert, P.; Toussaint, B.; Crommen, J. Automated Determination of Verapamil and Norverapamil in Human Plasma with On-Line Coupling of Dialysis to High-Performance Liquid Chromatography and Fluorometric Detection. J. Chromatogr. A 1996, 750, 351–360. [Google Scholar] [CrossRef]
- Mohammed, M.S.; Hefnawy, M.M.; Al-Majed, A.A.; Alrabiah, H.K.; Algrain, N.A.; Obaidullah, A.J.; Altamimi, A.S.; Bin Jardan, Y.A.; Al-Hossaini, A.M. Development and Validation of a Chiral Liquid Chromatographic Assay for Enantiomeric Separation and Quantification of Verapamil in Rat Plasma: Stereoselective Pharmacokinetic Application. Molecules 2021, 26, 2091. [Google Scholar] [CrossRef]
- Muscará, M.N.; de-Nucci, G. Measurement of Plasma Verapamil Levels by High-Performance Liquid Chromatography. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 1993, 26, 753–763. [Google Scholar]
- Negrusz, A.; Wacek, B.C.; Toerne, T.; Bryant, J. Quantitation of Verapamil and Norverapamil in Postmortem and Clinical Samples Using Liquid-Liquid Extraction, Solid Phase Extraction, and HPLC. Chromatographia 1997, 46, 191–196. [Google Scholar] [CrossRef]
- Stagni, G.; Gillespie, W.R. Simultaneous Analysis of Verapamil and Norverapamil Enantiomers in Human Plasma by High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. App. 1995, 667, 349–354. [Google Scholar] [CrossRef]
- Moreira, C.D.S.; Lourenço, F.R. Development and Optimization of a Stability-Indicating Chromatographic Method for Verapamil Hydrochloride and Its Impurities in Tablets Using an Analytical Quality by Design (AQbD) Approach. Microchem. J. 2020, 154, 104610. [Google Scholar] [CrossRef]
- Chytil, L.; Štrauch, B.; Cvačka, J.; Marešová, V.; Widimský, J.; Holaj, R.; Slanař, O. Determination of Doxazosin and Verapamil in Human Serum by Fast LC–MS/MS: Application to Document Non-Compliance of Patients. J. Chromatogr. B 2010, 878, 3167–3173. [Google Scholar] [CrossRef] [PubMed]
- Hedeland, M.; Fredriksson, E.; Lennernäs, H.; Bondesson, U. Simultaneous Quantification of the Enantiomers of Verapamil and Its N-Demethylated Metabolite in Human Plasma Using Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2004, 804, 303–311. [Google Scholar] [CrossRef]
- Hefnawy, M.; Al-Majed, A.; Alrabiah, H.; Algrain, N.; Mohammed, M.; Jardan, Y.B. Rapid and Sensitive LC-MS/MS Method for the Enantioanalysis of Verapamil in Rat Plasma Using Superficially Porous Silica Isopropyl-Cyclofructan 6 Chiral Stationary Phase after SPE: Application to a Stereoselective Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2021, 201, 114108. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, L.; Øiestad, E.L.; Opdal, M.S.; Krogh, M.; Lundanes, E.; Christophersen, A.S. Simultaneous Determination of 6 Beta-Blockers, 3 Calcium-Channel Antagonists, 4 Angiotensin-II Antagonists and 1 Antiarrhytmic Drug in Post-Mortem Whole Blood by Automated Solid Phase Extraction and Liquid Chromatography Mass Spectrometry. J. Chromatogr. B 2007, 850, 147–160. [Google Scholar] [CrossRef]
- Li, S.; Liu, G.; Jia, J.; Liu, Y.; Pan, C.; Yu, C.; Cai, Y.; Ren, J. Simultaneous Determination of Ten Antiarrhythic Drugs and a Metabolite in Human Plasma by Liquid Chromatography—Tandem Mass Spectrometry. J. Chromatogr. B 2007, 847, 174–181. [Google Scholar] [CrossRef]
- Logoyda, L.; Herasymiuk, M.; Popovych, D.; Pidruchna, S.; Hlushok, V.; Herasymiuk, N.; Zarivna, N. HPLC MS/MS Method Development for the Quantitative Determination of Verapamil Hydrochloride from Caco-2 Cell Monolayers. Pharmacia 2020, 67, 63–69. [Google Scholar] [CrossRef]
- Mullett, W.M.; Walles, M.; Levsen, K.; Borlak, J.; Pawliszyn, J. Multidimensional On-Line Sample Preparation of Verapamil and Its Metabolites by a Molecularly Imprinted Polymer Coupled to Liquid Chromatography–Mass Spectrometry. J. Chromatogr. B 2004, 801, 297–306. [Google Scholar] [CrossRef]
- Xing, H.; Luo, X.; Li, Y.; Fan, C.; Liu, N.; Cui, C.; Li, W. Effect of Verapamil on the Pharmacokinetics of Hydroxycamptothecin and Its Potential Mechanism. Pharm. Biol. 2020, 58, 152–156. [Google Scholar] [CrossRef]
- Farazmand, F.; Qomi, M. Optimized Trace Analysis of Verapamil in Biological Fluids Using Solvent Bar Micro Extraction Technique Coupled with HPLC-UV Detection. Curr. Anal. Chem. 2020, 16, 753–760. [Google Scholar] [CrossRef]
- Garcia, M.A.; Aramayona, J.J.; Bregante, M.A.; Fraile, L.J.; Solans, C. Simultaneous Determination of Verapamil and Norverapamil in Biological Samples by High-Performance Liquid Chromatography Using Ultraviolet Detection. J. Chromatogr. B Biomed. Sci. App. 1997, 693, 377–382. [Google Scholar] [CrossRef]
- Kazemi, M.; Ahmadi, F.; Piltan, M.; Alipour, S. Validation of a Simple and Rapid HPLC-UV Method for Simultaneous Analysis of Co-Delivered Doxorubicin and Verapamil and Its Application to Characterization of PLGA Nanoparticles. Trends Pharm. Sci. 2022, 8, 223–232. [Google Scholar] [CrossRef]
- Oda, Y.; Asakawa, N.; Kajima, T.; Yoshida, Y.; Sato, T. On-Line Determination and Resolution of Verapamil Enantiomers by High-Performance Liquid Chromatography with Column Switching. J. Chromatogr. A 1991, 541, 411–418. [Google Scholar] [CrossRef]
- Pourkarim, F.; Rahimpour, E.; Jouyban, A. Analytical Techniques for the Determination of Verapamil in Biological Samples and Dosage Forms: An Overview. Bioanalysis 2019, 11, 2189–2205. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, W. A Validated Method for the Determination of Verapamil and Norverapamil in Human Plasma. J. Pharm. Biomed. Anal. 2001, 25, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, G.; Ramanathan, S.; Mansor, S.M.; Nair, N.K.; Sattar, M.A.; Croft, S.L.; Navaratnam, V. Development and Validation of RP-HPLC-UV Method for Simultaneous Determination of Buparvaquone, Atenolol, Propranolol, Quinidine and Verapamil: A Tool for the Standardization of Rat in Situ Intestinal Permeability Studies. J. Pharm. Biomed. Anal. 2007, 43, 1546–1551. [Google Scholar] [CrossRef]
- Javanbakht, M.; Shaabani, N.; Abdouss, M.; Ganjali, M.; Mohammadi, A.; Norouzi, P. Molecularly Imprinted Polymers for Selective Solid-Phase Extraction of Verapamil from Biological Fluids and Human Urine. Curr. Pharm. Anal. 2009, 5, 269–276. [Google Scholar] [CrossRef]
- Ma, Z.; Shayeganpour, A.; Brocks, D.R.; Lavasanifar, A.; Samuel, J. High-performance Liquid Chromatography Analysis of Curcumin in Rat Plasma: Application to Pharmacokinetics of Polymeric Micellar Formulation of Curcumin. Biomed. Chromatogr. 2007, 21, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Ruzilawati, A.B.; Wahab, M.S.A.; Imran, A.; Ismail, Z.; Gan, S.H. Method Development and Validation of Repaglinide in Human Plasma by HPLC and Its Application in Pharmacokinetic Studies. J. Pharm. Biomed. Anal. 2007, 43, 1831–1835. [Google Scholar] [CrossRef]
- Jimmerson, L.C.; Zheng, J.-H.; Bushman, L.R.; MacBrayne, C.E.; Anderson, P.L.; Kiser, J.J. Development and Validation of a Dried Blood Spot Assay for the Quantification of Ribavirin Using Liquid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. B 2014, 944, 18–24. [Google Scholar] [CrossRef]
- Bansal, S.; DeStefano, A. Key Elements of Bioanalytical Method Validation for Small Molecules. AAPS J. 2007, 9, E109–E114. [Google Scholar] [CrossRef]
- Al-Jenoobi, F.I.; Ahad, A.; Mahrous, G.M.; Raish, M.; Alam, M.A.; Al-Mohizea, A.M. A Simple HPLC–UV Method for the Quantification of Theophylline in Rabbit Plasma and Its Pharmacokinetic Application. J. Chromatogr. Sci. 2015, 53, 1765–1770. [Google Scholar] [CrossRef]
- El-Houssieny, B.M.; Wahman, L.F.; Arafa, N.M.S. Bioavailability and Biological Activity of Liquisolid Compact Formula of Repaglinide and Its Effect on Glucose Tolerance in Rabbits. Biosci. Trends 2010, 4, 17–24. [Google Scholar] [PubMed]
- Shargel, L.; Wu-Pong, S.; Yu, A.B.C. Applied Biopharmaceutics & Pharmacokinetics, 6th ed.; The McGraw-Hill Companies: New York, NY, USA, 2012; pp. 131–141, 657–691. [Google Scholar]
Trial | Mobile Phase Composition | Ratio v/v | Observation |
---|---|---|---|
1 | Methanol:Water | 50:50 | Solvent front resulted |
2 | Methanol:Water | 65:35 | No resolution |
3 | Methanol:Water | 80:20 | Tailing with Peak asymmetry |
4 | ACN:Water | 80:20 | Tailing with resolution |
5 | ACN:0.1% THF in water | 80:20 | Resolution with Symmetry |
Spiked Conc. (µg/mL) | Assay * | SD | RE | Found Conc. * (µg/mL) | SD (µg/mL) | CV |
---|---|---|---|---|---|---|
During a Day | ||||||
0.025 | 102.16 | 3.25 | 2.16 | 0.02554 | 0.000813 | 3.18 |
0.075 | 99.57 | 2.47 | −0.43 | 0.07467 | 0.00247 | 3.31 |
2.5 | 101.28 | 2.19 | 1.28 | 2.532 | 0.05475 | 2.16 |
4 | 100.13 | 1.96 | 0.13 | 4.0052 | 0.0784 | 1.95 |
Inter-Day | ||||||
0.025 | 100.96 | 3.72 | 0.96 | 0.02524 | 0.00093 | 3.68 |
0.075 | 98.96 | 2.68 | −1.04 | 0.07422 | 0.00268 | 3.61 |
2.5 | 102.06 | 2.36 | 2.06 | 2.5515 | 0.059 | 2.31 |
4 | 101.14 | 2.05 | 1.14 | 4.0456 | 0.082 | 2.03 |
Drug Conc. (µg/mL) | Assay of Sample * | ME * | EE * | PE * | ||
---|---|---|---|---|---|---|
Methanol | Un-Extracted | Extracted | ||||
0.075 | 102.15 (±2.45) | 97.25 (±3.17) | 101.24 (±2.19) | 95.21 (±2.37) | 101.1 (±1.82) | 99.11 (±3.42) |
2.5 | 98.64 (±1.29) | 99.94 (±2.84) | 98.81 (±3.07) | 101.32 (±0.98) | 98.87 (±2.56) | 100.17 (±2.83) |
4 | 99.62 (±3.52) | 99.31 (±2.21) | 102.27 (±1.87) | 99.69 (±1.84) | 102.98 (±3.27) | 100.65 (±3.18) |
Mean ** | 100.14 | 98.83 | 100.77 | 98.74 | 101.98 | 100.65 |
%RSD ** | 1.81 | 1.41 | 1.78 | 3.17 | 2.76 | 1.82 |
QC Conc. | Conc. (µg/mL) | Accuracy * | %RSD | p-Value |
---|---|---|---|---|
Plasma | ||||
LQC | 0.075 | 98.47 | 3.21 | 0.65 |
HQC | 4 | 100.14 | 3.03 | 0.75 |
Reconstituted | ||||
LQC | 0.075 | 101.33 | 4.39 | 0.64 |
HQC | 4 | 100.26 | 1.98 | 0.83 |
Dry state | ||||
LQC | 0.075 | 99.14 | 1.77 | 0.46 |
HQC | 4 | 101.13 | 2.4 | 0.52 |
QC Conc. | Conc. (µg/mL) | Accuracy * | % CV | p-Value |
---|---|---|---|---|
Cycle 0 | ||||
LQC | 0.075 | 100.41 | 2.95 | - |
HQC | 4 | 101.23 | 1.96 | - |
Cycle 1 | ||||
LQC | 0.075 | 98.96 | 5.14 | 0.69 |
HQC | 4 | 96.12 | 6.95 | 0.23 |
Cycle 2 | ||||
LQC | 0.075 | 95.13 | 10.55 | 0.88 |
HQC | 4 | 94.27 | 8.96 | 0.63 |
Cycle 3 | ||||
LQC | 0.075 | 85.91 | 10.83 | 0.059 |
HQC | 4 | 82.15 | 14.55 | 0.061 |
Time | QC Conc. | Conc. (µg/mL) | Accuracy * | % CV | p-Value |
---|---|---|---|---|---|
0 Month | LQC | 0.075 | 102.45 | 3.96 | - |
HQC | 4 | 101.12 | 1.85 | - | |
1 Month | LQC | 0.075 | 96.13 | 5.48 | 0.29 |
HQC | 4 | 95.46 | 6.81 | 0.302 | |
2 Month | LQC | 0.075 | 85.02 | 15.16 | 0.114 |
HQC | 4 | 90.6 | 6.87 | 0.059 | |
3 Month | LQC | 0.075 | 80.07 | 12.99 | 0.029 |
HQC | 4 | 82.32 | 15.58 | 0.075 |
PK Items | Unit | Oral | ||
---|---|---|---|---|
Mean * | SD | SE | ||
Cmax | µg/mL | 3.47 | 0.31 | 0.16 |
Tp | h | 1.59 | 0.22 | 0.11 |
Ka | h−1 | 1.54 | 0.37 | 0.20 |
T1/2-ab | h | 0.47 | 0.10 | 0.05 |
KE | h−1 | 0.17 | 0.00 | 0.00 |
T1/2-E | h | 4.18 | 0.05 | 0.02 |
AUC0–6 | µg/mL/h | 18.12 | 0.60 | 8.29 |
AUC6–∞ | µg/mL/h | 7.10 | 1.20 | 2.93 |
AUC0–∞ | µg/mL/h | 25.21 | 1.56 | 11.28 |
AUMC0–6 | µg.h/mL | 66.04 | 2.35 | 30.14 |
AUMC6–∞ | µg.h/mL | 96.27 | 22.02 | 37.96 |
AUMC0–∞ | µg.h/mL | 162.31 | 22.89 | 68.45 |
MRT | h | 6.75 | 0.06 | 3.19 |
Vd | L | 8.63 | 1.04 | 0.54 |
CLT | L/h | 1.43 | 0.18 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navamanisubramanian, R.; Seetharaman, S.; Sugumaran, A.; Alsheikh, M.Y.; Naguib, I.A.; Gamal, M. Affordable and Reliable RP-HPLC Method for Verapamil Hydrochloride Quantification in Rabbit Plasma for Pharmacokinetics. Processes 2024, 12, 2211. https://doi.org/10.3390/pr12102211
Navamanisubramanian R, Seetharaman S, Sugumaran A, Alsheikh MY, Naguib IA, Gamal M. Affordable and Reliable RP-HPLC Method for Verapamil Hydrochloride Quantification in Rabbit Plasma for Pharmacokinetics. Processes. 2024; 12(10):2211. https://doi.org/10.3390/pr12102211
Chicago/Turabian StyleNavamanisubramanian, Raja, Shanmuganathan Seetharaman, Abimanyu Sugumaran, Mona Y. Alsheikh, Ibrahim A. Naguib, and Mohammed Gamal. 2024. "Affordable and Reliable RP-HPLC Method for Verapamil Hydrochloride Quantification in Rabbit Plasma for Pharmacokinetics" Processes 12, no. 10: 2211. https://doi.org/10.3390/pr12102211
APA StyleNavamanisubramanian, R., Seetharaman, S., Sugumaran, A., Alsheikh, M. Y., Naguib, I. A., & Gamal, M. (2024). Affordable and Reliable RP-HPLC Method for Verapamil Hydrochloride Quantification in Rabbit Plasma for Pharmacokinetics. Processes, 12(10), 2211. https://doi.org/10.3390/pr12102211