A Review of Linear Compressor Vibration Isolation Methods
Abstract
:1. Introduction
2. Vibration Source Analysis and Measurement Methods
2.1. Vibration Source Analysis
2.1.1. Electromagnetic Vibration
- The forces acting on the surface of stator teeth
- 2.
- The forces acting on the stator windings
- 3.
- Magnetostrictive force
2.1.2. Mechanical Vibration
2.1.3. Spring Resonance
2.2. Vibration Testing Methods and Evaluation Indicators
3. Vibration Isolation Methods
3.1. Vibration Isolation Model
3.1.1. Single Degree of Freedom (SDOF) Model
3.1.2. Multi-Degree of Freedom (MDOF) Model
3.2. Passive Vibration Isolation
3.2.1. Spring Isolators
3.2.2. Rubber Vibration Isolators
3.2.3. Magnetorheological Fluid Vibration Isolators
3.2.4. Composite Damping Vibration Isolators
3.3. Active Vibration Isolation
3.3.1. Feedforward Active Vibration Isolation Control
3.3.2. Feedback Active Vibration Isolation Control
4. Vibration Isolation Optimization Methods for Linear Compressors
5. Summary and Outlook
- Given the diversity of linear compressor types, the optimal vibration isolation control strategies also vary. It is necessary to develop tailored vibration isolation optimization control methods.
- In the field of active vibration isolation control, both feedforward and feedback control strategies exhibit unique characteristics, with feedforward excelling in predicting vibrations and feedback excelling in responding to them. However, regardless of the control strategy employed, the core problem lies in designing efficient and stable control algorithms. In particular, for the cutting-edge topic of vibration energy recovery, it is of the utmost importance to develop algorithms that are both robust and possess rapid convergence properties.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Li, L. A review of linear motors for compressors and the development of key technologies. Chin. J. Proc. CSEE 2013, 33, 52–68+15. [Google Scholar]
- Liang, K.; Stone, R.; Hancock, W.; Dadd, M.; Bailey, P. Comparison between a crank-drive reciprocatin compressor and a novel oil-free linear compressor. Int. J. Refrig. 2014, 45, 25–34. [Google Scholar] [CrossRef]
- Huang, Z.; Niu, Y.; Liu, Y.; Liu, Y.; Zhang, C.; Xing, E.; Cai, J. Theoretical and Experimental Investigation on Comparing the Efficiency of a Single-Piston Valved Linear Compressor and a Symmetrical Dual-Piston Valved Linear Compressor. Energies 2022, 15, 8760. [Google Scholar] [CrossRef]
- Chen, X. Current status and trends of reliability for miniature Stirling refrigeration machines. Vac. Low Temp. 2010, 16, 198–202. [Google Scholar]
- Van der Walt, N.R.; Under, R. The Simulation and Design of a High Efficiency, Lubricant Free, Linear Compressor for a Domestic Refrigerator. Int. Compress. Eng. Conf. 1992, 787. [Google Scholar]
- Lee, H.; Ki, S.; Jung, S.; Rhee, W. The Innovative Green Technology for Refrigerators Development of Innovative Linear Compressor. Int. Compress. Eng. Conf. 2008, 1867. [Google Scholar]
- Ye, Y. Electrical Machine Expert. In Principles and Applications of Linear Motors; Chin. J. Mechanical Industry Press: Beijing, China, 2000. [Google Scholar]
- Wang, J.; Howe, D.; Lin, Z. Comparative studies on linear motor topologies for reciprocating vapor compressors. In Proceedings of the 2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 3–5 May 2007; Volume 1, pp. 364–369. [Google Scholar]
- Zhang, G.; Zhang, H.; You, X. Research progress and key technology analysis of dynamic magnetic linear compressors. Refrig. Technol. 2022, 42, 80–85. [Google Scholar]
- Willie, J.; Sachs, R. Structural and torsional vibration and noise analysis of a dry screw compressor. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2017, 23, 4–13. [Google Scholar] [CrossRef]
- Dadd, M.W.; Bailey, P.B.; Davey, G.; Davis, T.; Thomlinson, B.J. Vibration reduction in balanced linear compressors. Cryocoolers 2002, 11, 175–182. [Google Scholar]
- Vér, I.L.; Beranek, L.L. Noise and Vibration Control Engineering: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Torregrossa, D.; Peyraut, F.; Fahimi, B.; M’Boua, J.; Miraoui, A. Multiphysics finite-element modeling for vibration and acoustic analysis of permanent magnet synchronous machine. IEEE Trans. Energy Convers. 2010, 26, 490–500. [Google Scholar] [CrossRef]
- Zhu, W.; Fahimi, B.; Pekarek, S. A field reconstruction method for optimal excitation of permanent magnet synchronous machines. IEEE Trans. Energy Convers. 2006, 21, 305–313. [Google Scholar] [CrossRef]
- Lee, S.H.; Hong, J.P.; Hwang, S.M.; Lee, W.T.; Lee, J.Y.; Kim, Y.K. Optimal design for noise reduction in interior permanent-magnet motor. IEEE Trans. Ind. Appl. 2009, 45, 1954–1960. [Google Scholar]
- Mininger, X.; Galopin, N.; Bouillault, F.; Gabsi, M. Analysis of electromagnetic strains on a structure such as switched reluctance machine. Eur. Phys. J.-Appl. Phys. 2007, 39, 191–196. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y. Influence of radial force harmonics with low mode number on electromagnetic vibration of PMSM. IEEE Trans. Energy Convers. 2013, 29, 38–45. [Google Scholar] [CrossRef]
- Lisner, R.P.; Timar, P.L. A new approach to electric motor acoustic noise standards and test procedures. IEEE Trans. Energy Convers. 1999, 14, 692–697. [Google Scholar] [CrossRef]
- Suh, K.; Heo, D.; Kim, H. CAE/CFD Application for Linear Compressor. Int. Compress. Eng. Conf. 2006, 1726. [Google Scholar]
- Sun, J.; Li, J.; Liu, Y.; Huang, Z.; Cai, J. A Novel Oil-free Dual Piston Compressor Driven by a Moving Coil Linear Motor with Capacity Regulation Using R134a. Sustainability 2021, 13, 5029. [Google Scholar] [CrossRef]
- Marquardt, E.; Radebaugh, R.; Kittel, P. Design equations and scaling laws for linear compressors with flexure springs. Cryocoolers 1993, 7, 783–804. [Google Scholar]
- Liang, K. A review of linear compressors for refrigeration. Int. J. Refrig. 2017, 84, 253–273. [Google Scholar] [CrossRef]
- Mauritsen, L. Reduction of Vibration and Drift. In Cryogenic Engineering and Technologies; CRC Press: Boca Raton, FL, USA, 2019; pp. 113–139. [Google Scholar]
- Rijpma, A.P.; Verberne, J.F.C.; Witbreuk, E.H.R.; Bruins, P.C.; ter Brake, H.J. Adaptive periodic distrubance cancellation in a set-up of two cryocoolers. J. Sound Vib. 1998, 217, 419–434. [Google Scholar] [CrossRef]
- Olivieri, E.; Billard, J.; De Jesus, M.; Juillard, A.; Leder, A. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 858, 73–79. [Google Scholar] [CrossRef]
- Tang, M.; Zou, H.; Wang, M.; Tian, C. Fourier series analysis applied in linear compressor vibration analysis. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 1065–1069. [Google Scholar]
- Wu, Z.; Li, H.; Kong, X.; Deng, Z. Research on viscoelastic damping isolators with biconcave negative Poisson’s ratio metamaterials. Chin. J. Mech. Sci. Technol. 2024, 1–9. [Google Scholar] [CrossRef]
- Carrella, A.; Brennan, M.J.; Waters, T.P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 2007, 301, 678–689. [Google Scholar] [CrossRef]
- Carrella, A.; Brennan, M.J.; Waters, T.P.; Lopes, V., Jr. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 2012, 55, 22–29. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Xu, D.; Bishop, S. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 2015, 346, 53–69. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Li, H. Design and analysis of a high-static-low-dynamic stiffness isolator using the cam-roller-spring mechanism. J. Vib. Acoust. 2020, 142, 021009. [Google Scholar] [CrossRef]
- Liu, X.; Huang, X.; Hua, H. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 2013, 332, 3359–3376. [Google Scholar] [CrossRef]
- Le, T.D.; Ahn, K.K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 2011, 330, 6311–6335. [Google Scholar] [CrossRef]
- Le, T.D.; Ahn, K.K. Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 2013, 70, 99–112. [Google Scholar] [CrossRef]
- Wu, W.; Chen, X.; Shan, Y. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 2014, 333, 2958–2970. [Google Scholar] [CrossRef]
- Yan, L.; Gong, X. Experimental study of vibration isolation characteristics of a geometric anti-spring isolator. Appl. Sci. 2017, 7, 711. [Google Scholar] [CrossRef]
- Sugahara, Y.; Takigami, T.; Kazato, A. Vertical Vibration Suppression of Railway Vehicle by Damping Control of Air Springs. Trans. Jpn. Soc. Mech. Eng. C 2006, 72, 2762–2769. [Google Scholar] [CrossRef]
- Sun, J.; Huang, X.; Liu, X. Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 2013, 74, 1103–1112. [Google Scholar] [CrossRef]
- Zhao, F.; Ji, J.; Ye, K.; Luo, Q. An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 2021, 192, 106093. [Google Scholar] [CrossRef]
- Lee, H.; Sun, H.; Kim, Y. Compact Linear Compressor with Internal Vibration Absorber. Int. Compress. Eng. Conf. 2018, 1441, 1–9. [Google Scholar]
- Yan, B.; Yu, N.; Wang, Z.; Wu, C.; Wang, S.; Zhang, W. Lever-type quasi-zero stiffness vibration isolator with magnetic spring. J. Sound Vib. 2022, 527, 116865. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Ho, C.M.; Ahn, K.K. An Air Spring Vibration Isolator Based on a Negative-Stiffness Structure for Vehicle Seat. Appl. Sci. 2021, 11, 11539. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Ye, L.; Huang, G.; Xu, Y. The dynamic characteristics of silicone rubber isolator. J. Wuhan Univ. Technol.-Mater. Sci. Ed 2012, 27, 130–133. [Google Scholar] [CrossRef]
- Speranzini, A.H.; Drost, S.J. EPDM and chlorobutyl blends for tire sidewalls. Rubber Chem. Technol. 1970, 43, 482–500. [Google Scholar] [CrossRef]
- Zachariah, A.K.; Geethamma, V.G.; Chandra, A.K.; Mohammed, P.K.; Thomas, S. Rheological behaviour of clay incorporated natural rubber and chlorobutyl rubber nanocomposites. RSC Adv. 2014, 4, 58047–58058. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Sun, Z. Three-directional vibration reduction characteristics of a new type of CIIR/NR blended rubber shock absorber. Chin. J. Ordnance Mater. Sci. Eng. 2024, 47, 90–96. [Google Scholar]
- Wang, L.; Li, Y.; Ma, Z. Calculation and parameter optimization of radial stiffness for vehicle annular rubber shock absorbers based on the Mooney-Rivlin model. Chin. J. J. Ordnance Eng. 2022, 43, 35–45. [Google Scholar] [CrossRef]
- Fayyadh, N.K.; Hejazi, F.; Chong, T. Development of floating rubber-concrete isolation slab system for 3D vibrations. J. Build. Eng. 2022, 51, 104246. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Xu, D.; Hu, J.; Min, W.; Pang, L. A negative stiffness vibration isolator using magnetic spring combined with rubber membrane. J. Mech. Sci. Technol. 2013, 27, 813–824. [Google Scholar] [CrossRef]
- Lu, Z.; Liang, Q.; Zhou, Y.; Luo, W.; Li, J.; Jiang, K. Novel Thick Layer Damping Rubber Bearing (TLDRB) with Reduced Vertical Stiffness: Laboratory Tests and Mechanical Models. J. Build. Eng. 2024, 94, 109839. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X. Research and applications of MR elastomers. Recent Pat. Mech. Eng. 2008, 1, 161–166. [Google Scholar] [CrossRef]
- Dogruer, U.; Gordaninejad, F.; Evrensel, C.A. A magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV). In Smart Structures and Materials 2004: Damping and Isolation; SPIE: Bellingham, WA, USA, 2004; Volume 5386, pp. 195–203. [Google Scholar]
- Karakas, E.S.; Gordaninejad, F.; Evrensel, C.A.; Yeo, M.S.; Liu, Y.; Sahin, H. Control of a quarter HMMWV suspension system using a magnetorheological fluid damper. In Smart Structures and Materials 2004: Damping and Isolation; SPIE: Bellingham, WA, USA, 2004; Volume 5386, pp. 204–213. [Google Scholar]
- Dogruer, U.; Gordaninejad, F.; Evrensel, C.A. A new magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV). J. Intell. Mater. Syst. Struct. 2008, 19, 641–650. [Google Scholar] [CrossRef]
- Sun, S.; Deng, H.; Du, H.; Li, W.; Yang, J.; Liu, G.; Yan, T. A compact variable stiffness and damping shock absorber for vehicle suspension. IEEE/ASME Trans. Mechatron. 2015, 20, 2621–2629. [Google Scholar] [CrossRef]
- Rajhan, N.H.; Hamid, H.A.; Azmi, I.; Ismail, R. Magnetorheological elastomers: A review. Appl. Mech. Mater. 2015, 695, 255–259. [Google Scholar] [CrossRef]
- Chen, L.; Gong, X.; Li, W. Damping of magnetorheological elastomers. Chin. J. Chin. J. Chem. Phys. 2008, 21, 581–585. [Google Scholar] [CrossRef]
- Deng, H.; Gong, X. Application of magnetorheological elastomer to vibration absorber. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1938–1947. [Google Scholar] [CrossRef]
- Sapiński, B. Energy-harvesting linear MR damper: Prototyping and testing. Smart Mater. Struct. 2014, 23, 035021. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, G. Design and simulation of a composite energy-feeding magnetorheological damper. Chin. J. Mach. Tool Hydraul. 2023, 51, 163–170. [Google Scholar]
- Jeon, S.-H.; Jeong, W.-B. Reduction of Structural Vibration of a Linear Compressor using a Plate-type Dynamic Absorber. J. Korea Soc. Noise Vib. Eng. 2012, 22, 533–538. [Google Scholar]
- Fan, R.; Meng, G.; Yang, J.; He, C. Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles. J. Sound Vib. 2009, 319, 58–76. [Google Scholar] [CrossRef]
- Barrera, C.S.; Tardiff, J.L. Static and dynamic properties of eggshell filled natural rubber composites for potential application in automotive vibration isolation and damping. J. Clean. Prod. 2022, 353, 131656. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Z.; He, Q.; Du, Q.; Liu, X. Influence of uncertainty and excitation amplitude on the vibration characteristics of rubber isolators. J. Sound Vib. 2016, 377, 216–225. [Google Scholar]
- Ren, Z.; Liang, S.; Li, J. Dynamic and static performance of metal-rubber composite vibration isolators. Chin. J. J. Fuzhou Univ. (Nat. Sci. Ed.) 2024, 52, 69–76. [Google Scholar]
- Chen, B.; She, N.; Lin, D.; Yan, X.; Peng, X. Experimental study on the nonlinear vibration of a new composite magnetorheological damping system. Mech. Syst. Signal Process. 2022, 181, 109480. [Google Scholar] [CrossRef]
- Champion, S.L.; Wu, Y.W.A.; Kieffer, M.H. Adaptive Feedforward Vibration Control System and Method. U.S. Patent 5,836,165A, 17 November 1998. [Google Scholar]
- Aubrun, J.N.; Clappier, R.R.; Lorell, K.R.; Nast, T.C.; Reshatoff, P.J. A high-performance force cancellation control system for linear-drive split-cycle Stirling cryocoolers. Adv. Cryog. Eng. 1991, 37, 1029–1036. [Google Scholar]
- Hockney, R.; Fenn, R.; Johnson, B.; Gaffney, M. Narrow Band Controller. U.S. Patent 5,901,233, 4 May 1999. [Google Scholar]
- Liu, L.; Tian, S.; Xue, D.; Zhang, T.; Chen, Y. Industrial feedforward control technology: A review. J. Intell. Manuf. 2019, 30, 2819–2833. [Google Scholar] [CrossRef]
- Elliott, S.J. Optimal controllers and adaptive controllers for multichannel feedforward control of stochastic disturbances. IEEE Trans. Signal Process. 2000, 48, 1053–1060. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, X.; Zhou, B. Feedforward compensation in vibration isolation system subject to base disturbance. J. Vib. Control 2015, 21, 1201–1209. [Google Scholar] [CrossRef]
- van de Ridder, L.; Hakvoort, W.B.J.; Brouwer, D.M.; van Dijk, J.; Lötters, J.C.; de Boer Coriolis, A. A mass-flow meter with integrated multi-DOF active vibration isolation. Mechatronics 2016, 36, 0957–4158. [Google Scholar] [CrossRef]
- Beijen, M.A.; Heertjes, M.F.; Butler, H. Self-tuning disturbance feedforward control with drift prevention for air mount systems. IFAC Proc. Vol. 2015, 47, 5611–5616. [Google Scholar] [CrossRef]
- Beijen, M.A.; Heertjes, M.F.; Van Dijk, J.; Hakvoort, W.B.J. Self-tuning MIMO disturbance feedforward control for active hard-mounted vibration isolators. Control Eng. Pract. 2018, 72, 90–103. [Google Scholar] [CrossRef]
- Beijen, M.A.; Heertjes, M.F.; Butler, H.; Steinbuch, M. Disturbance feedforward control for active vibration isolation systems with internal isolator dynamics. J. Sound Vib. 2018, 436, 220–235. [Google Scholar] [CrossRef]
- Beijen, M.A.; Voorhoeve, R.; Heertjes, M.F.; Oomen, T. Experimental estimation of transmissibility matrices for industrial multi-axis vibration isolation systems. Mech. Syst. Signal Process. 2018, 107, 469–483. [Google Scholar] [CrossRef]
- Batista, E.L.O.; Barghouthi, M.R.; de Oliveira Lopes, E.M. A novel adaptive scheme to improve the performance of feedforward active vibration control systems. IEEE/ASME Trans. Mechatron. 2021, 27, 2322–2332. [Google Scholar] [CrossRef]
- Hansen, C.H.; Snyder, S.D.; Qiu, X.; Brooks, L.A.; Moreau, D.J. Active Control of Noise and Vibration, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; p. 1267. [Google Scholar]
- Wang, C.; Xie, X.; Chen, Y.; Zhang, Z. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators. J. Sound Vib. 2016, 383, 1–19. [Google Scholar] [CrossRef]
- Cheng, C.; Ma, R.; Hu, Y. Performance analysis of a quasi-zero-stiffness vibration isolator with time-delayed dual feedback control. Arch. Appl. Mech. 2022, 92, 4017–4032. [Google Scholar] [CrossRef]
- Ren, M.; Xie, X.; Zhang, Z. Sub band reinforced adaptive feedback control algorithm in mechanical vibration control. J. Vib. Control 2023, 29, 736–745. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Y.; Dai, C.; Long, Z. Tracking-Differentiator-Based Position and Acceleration Feedback Control in Active Vibration Isolation with Electromagnetic Actuator. Actuators 2023, 12, 271. [Google Scholar] [CrossRef]
- Mininger, X.; Lefeuvre, E.; Gabsi, M.; Richard, C.; Guyomar, D. Semiactive and Active Piezoelectric Vibration Controls for Switched Reluctance Machine. IEEE Trans. Energy Convers. 2008, 23, 78–85. [Google Scholar] [CrossRef]
- Choi, J.; Kim, K.; Kim, H.; Lee, S. Effect of inertia variations for active vibration isolation systems. Precis. Eng. 2020, 66, 507–518. [Google Scholar] [CrossRef]
- Shin, J.H.; Han, S.; Kwak, M.K. Active vibration control of plate by active mass damper and negative acceleration feedback control algorithms. J. Low Freq. Noise 2021, 40, 413–426. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Y.; Tang, Y.; Fu, H.; Lu, G.; Chen, G. A novel vibration control system for Stirling cryocoolers. Infrared Mater. Devices Appl. 2007, 6835, 78–88. [Google Scholar]
- Hassan, A.; Torres-Perez, A.; Kaczmarczyk, S.; Picton, P. Vibration control of a Stirling engine with an electromagnetic active tuned mass damper. Control Eng. Pract. 2016, 51, 108–120. [Google Scholar] [CrossRef]
- Bhatt, J.H.; Barve, J.J. Model predictive control of a miniaturized linear single-piston cryocooler. Cryogenics 2021, 115, 103261. [Google Scholar] [CrossRef]
- Veprik, A.M.; Nachman, I.; Pundak, N. Dynamic counterbalancing the single-piston linear compressor of a Stirling cryogenic cooler. Cryogenics 2009, 49, 165–170. [Google Scholar] [CrossRef]
- Veprik, A.M.; Babitsky, V.I.; Pundak, N.; Riabzev, S.V. Vibration Control of Linear Split Stirling Cryogenic Cooler for Airborne Infrared Application. Shock Vib. 2000, 7, 363–379. [Google Scholar] [CrossRef]
- Veprik, A.; Babitsky, V. Ultra-light weight undamped tuned dynamic absorber for cryogenically cooled infrared electro-optic payload. Cryogenics 2017, 83, 22–30. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, K.; Chen, H.; Zhang, P. Improved active vibration isolation systems. Tsinghua Sci. Technol. 2007, 12, 533–539. [Google Scholar] [CrossRef]
- Johnson, B.G.; Flynn, F.J.; Gaffney, M.S.; Johnson, D.L.; Ross, R.G. Demonstration of active vibration control on a stirling-cycle cryocooler testbed. In Proceedings of the 1992 American Control Conference, Chicago, IL, USA, 24–26 June 1992; IEEE: Piscataway, NJ, USA, 1992; pp. 1630–1631. [Google Scholar]
- Qin, T.; Zeng, X.; Cen, W.; Zeng, X.; Zeng, J.; Gao, K. Matching design of rubber air spring vibration isolating foot pads for new energy vehicle air conditioning compressors. Chin. J. Yunnan Chem. Eng. 2022, 49, 84–86. [Google Scholar]
- Cao, H. Vibration control for mechanical cryocoolers. Cryogenics 2022, 128, 103595. [Google Scholar] [CrossRef]
- Wu, A. Stirling-cycle cryocooler active vibration control. In Proceedings of the First IEEE Regional Conference on Aerospace Control Systems, Westlake Village, CA, USA, 25–27 May 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 395–399. [Google Scholar]
- Mok, M.; McKinley, I.; Rodriguez, J. Low temperature characterization of mechanical isolators for cryocoolers. Cryocoolers 2018, 20, 455–463. [Google Scholar]
- Mok, M.A.; McKinley, I.M.; Mastropietro, A.J. Thermal and exported vibration characterization of RICOR K508N cryocooler. In IOP Conference Series: Materials Science and Engineering. IOP Publ. 2020, 755, 012010. [Google Scholar]
- Kim, Y.K.; Koo, J.H.; Kim, K.S.; Kim, S.H. Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on magneto-rheological elastomers. Rev. Sci. Instrum. 2011, 82, 035103. [Google Scholar] [CrossRef]
- Schmidt, J.-A.; Schmidt, B.; Spagna, S.; Dietzel, D.; Falter, J.; Thummes, G.; Schirmeisen, A. Low input power 4 K pulse tube cryocooler driven by an inverter helium compressor: Intrinsic temperature oscillations and mechanical vibrations. Cryogenics 2020, 108, 103085. [Google Scholar] [CrossRef]
- Mu, Y.; Duan, Y.; Han, P.; Chi, G. Research progress of linear compressors and key technologies. Chin. J. Laser Infrared 2024, 54, 670–678. [Google Scholar]
- Doubrovsky, V.; Veprik, A.; Pundak, N. Sensorless balancing of a dual-piston linear compressor of a stirling cryogenic cooler. Cryocoolers 2004, 13, 231–240. [Google Scholar]
- Li, H.; Liu, X.; Teng, R.; Huo, J.; Jia, C. Magnetorheological fluid shock absorbers. Chin. J. Met. Funct. Mater. 2005, 2, 38–41. [Google Scholar]
- Collins, S.A.; von Flotow, A.H.; Paduano, J.D. Analogue adaptive vibration cancellation system for stirling cryocoolers. Cryogenics 1994, 34, 399–406. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J. Review of basic structure design of magnetorheological damper. Chin. J. Mech. Electr. Eng. Technol. 2023, 52, 34–40. [Google Scholar] [CrossRef]
- Kikuchi, K.; Yamada, T.; Kohjiro, S. Development of superconductor-insulator-superconductor (SIS) terahertz receiver with mechanical and thermal vibration-reduced cryocooler. IEEE Trans. Appl. Supercond. 2010, 21, 649–653. [Google Scholar] [CrossRef]
- Muo, U.E.; Madamedon, M.; Ball, A.D.; Gu, F. Wavelet packet analysis and empirical mode decomposition for the fault diagnosis of reciprocating compressors. International Conference on Automation and Computing (ICAC). In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Song, M.; Liu, H.; Xu, Y.; Gao, X.; Wang, D. Decoupling Strategy and Mechanism-intelligent Model of Non Square Flatness Control System. ISIJ Int. 2021, 61, 2552–2563. [Google Scholar] [CrossRef]
- Long, D.; Chen, Q.; Xiang, D.; Zhong, M.; Zhang, H. Simultaneous Identification of Vertical and Horizontal Complex Stiffness of Preloaded Rubber Mounts: Transformation of Frequency Response Functions and Decoupling of Degrees of Freedom. Exp. Mech. 2023, 63, 1479–1492. [Google Scholar] [CrossRef]
- Budai, C. Vibrations in single-degrees-of-freedom sampled-data linear mechanical systems. Period. Polytech. Mech. Eng. 2022, 66, 90–98. [Google Scholar] [CrossRef]
- Mousavi, H.; Ali Nekoui, M.; Derakhshan, G.; Hakimi, S.M.; Imani, H. A novel robust MPC scheme established on LMI formulation for surge instability of uncertain compressor system with actuator constraint and piping acoustic. Automatika 2024, 65, 1259–1270. [Google Scholar] [CrossRef]
Type | Structure | Modelling Diagram | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|
Spring Type Vibration Isolators | Cam–Roller–Spring Type | 1. Low production cost; 2. Excellent adjustment performance; 3. Excellent lateral vibration isolation; | 1. Complex structure; 2. Large installation space; 3. Discontinuity of transfer rate; | [30,31] | |
Negative-Stiffness Spring Type | 1. Excellent dynamic response; 2. high static load carrying capacity; 3. Tunability; | 1. Difficulty in adjusting stiffness; 2. Restricted vibration range; 3. Poor long-term stability; | [35,37,42] | ||
Spring Lever Type | 1. Excellent vibration isolation; 2. Reducing static deformation; 3. Achieving higher energy recovery; | 1. Large size and weight; 2. Affected by materials; 3. Environmentally sensitive; | [41] | ||
Rubber Vibration Isolators | Annular Metal Rubbers | 1. Simple structure; 2. Free frequency adaptation; 3. Satisfy a variety of use scenarios; | 1. Higher production costs; 2. Poor thermal conductivity; 3. Poor durability; | [46] | |
NBR-FKM | 1. Adjustable radial stiffness; 2. Strong environmental adaptability; 3. Excellent mechanical properties; | 1. Material dependence; 2. Structural complexity; 3. Complex production processes; | [47] | ||
Magnetorheological fluid dampers | Magnetorheological Fluid Types | 1. Damping is adjustable; 2. The control mode is simple; 3. Compact structure; | 1. Magnetic particle deposits; 2. Poor system stability; 3. High production cost; | [51,55,56] | |
Magnetorheological Elastomer (MRE) | 1. Adjustable resonant frequency; 2. Low requirement for sealing; 3. Compact structure; | 1. Slow response at high frequencies; 2. Sensitive to temperature changes; 3. High production cost; | [57,58] | ||
Magnetorheological liquid type with energy recovery | 1. Can achieve energy recovery; 2. No additional sensors required; | 1. Heavier damper weight; 2. Poor stability; 3. High production cost; | [60] | ||
Composite type damper | Rubber Spring Vibration Isolators | 1. High damping performance; 2. Simple structure, small footprint; 3. Good durability; | 1. Performance affected by temp; 2. Poor high frequency vibration isolation; 3. Low load-carrying capacity; | [49,65] | |
Rubber magnetorheological Isolators | 1. Excellent tangential load capacity; 2. Widely adjustable range of damping; 3. Response adjusted quickly; | 1. Significant temperature effects; 2. Complex design and high production costs; | [66] |
Type | Methods | Effect | Reference |
---|---|---|---|
Passive isolation | Tuned Dynamic Absorber + High-Damping Isolator | Vibration reduced by 3×, self-induced force 20× lower | [90] |
“Spring–mass–spring” balancer | Reduces resonance | [91] | |
Ultra-lightweight undamped tuned dynamic absorber | Ultra-low damping ratio, more than 100× vibration attenuation | [92] | |
Active isolation | Narrowband feedback control | Excellent isolation from high harmonic frequencies | [93] |
Combined with adaptive dynamic vibration absorbers | Faster response and excellent damping control accuracy | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Xu, J.; Han, B.; Zhu, Z.; Wang, S.; Wang, J.; Yang, X.; Cai, R.; Du, C.; Zeng, J. A Review of Linear Compressor Vibration Isolation Methods. Processes 2024, 12, 2210. https://doi.org/10.3390/pr12102210
Zeng X, Xu J, Han B, Zhu Z, Wang S, Wang J, Yang X, Cai R, Du C, Zeng J. A Review of Linear Compressor Vibration Isolation Methods. Processes. 2024; 12(10):2210. https://doi.org/10.3390/pr12102210
Chicago/Turabian StyleZeng, Xiangkun, Jiansheng Xu, Biaojie Han, Zhijun Zhu, Siyi Wang, Jiangang Wang, Xiaoqing Yang, Renye Cai, Canyi Du, and Jinbin Zeng. 2024. "A Review of Linear Compressor Vibration Isolation Methods" Processes 12, no. 10: 2210. https://doi.org/10.3390/pr12102210
APA StyleZeng, X., Xu, J., Han, B., Zhu, Z., Wang, S., Wang, J., Yang, X., Cai, R., Du, C., & Zeng, J. (2024). A Review of Linear Compressor Vibration Isolation Methods. Processes, 12(10), 2210. https://doi.org/10.3390/pr12102210