Electrochemical Oxidation of Glyphosate Using Graphite Rod Electrodes: Impact of Acetic Acid Pretreatment on Degradation Efficiency
Abstract
:1. Introduction
Chemical Structure | |
---|---|
Molecular formula | C3H8NO5P |
Molecular mass (g mol−1) | 169.07 |
CAS number | 1071-83-6 |
Solubility in water at 20 °C (g L−1) | 1050 |
LogKow | −3.4 |
pKa1 | 2 |
pKa2 | 2.6 |
pKa3 | 5.6 |
pKa4 | 10.6 |
Henry’s Law Constant (atm m3 mol−1) | 4.08 × 10−19 |
Process | Experimental Conditions | Removal Efficiency (%) | Reference |
---|---|---|---|
Electrocoagulation | Al as anode and cathode, 7.5 mA cm−2, 2 L of 270 mg L−1 of commercial GLY, 116 mg L−1 NaCl, 1130 mg L−1 of Na2SO4, pH 5.5, flow 2 L min−1 | >40% after 40 min of treatment | [30] |
EO | BDD as anode and cathode, 20 mL of 100 mg L−1 GLY, 10 mA cm−2, pH 2 | 79% Total organic carbon (TOC) removal at 6.0 Ah L−1 | [31] |
EO | Ti/PbO2 anode, Ti cathode, 4.77 A, 1 L of 16.7 mg L−1 GLY, 0.01 M of Na2SO4 | 95% and 90% of GLY and TOC, respectively, after 173 min | [32] |
EO | DSA® or Ti/Ru0.36Ti0.64O2 anodes, stainless steel cathode, 0.15 M of NaCl, 40 mA cm−2, pH 3 | >90% mineralization of GLY after 3 h | [33] |
EO | Pt-doped SnO2–Sb anode, stainless steel plate cathode, 200 mL of 200 mg L−1 GLY, 0.5 M H2SO4, flow 40.6 mL s−1, 1 A | 62% of GLY degradation after 48 h of treatment | [34] |
Electro-Fenton | Activated carbon fiber cathode, RuO2/Ti mesh anode, 0.1 M Na2SO4 electrolyte, pH 3, 1 mM Fe2+, 0.36 A | 85% after 120 min | [35] |
EO assisted by UV-C | DSA or BDD anode, stainless steel (AISI 304) cathode, 10 mA cm−2, NaCl of 2 g L−1, 1.5 L of 50 mg L−1 GLY, pH 4–5, 9 W UV-C lamp | Complete mineralization after 1 h of treatment | [36] |
Photoelectrocatalytic process | TiO2 on BDD anode, Pt mesh cathode, 400 mL of 50 mg L−1 GLY, 3 mA cm−2, UV light, 0.05 M Na2SO4, pH 4 | 99.5% removal | [37] |
Electro-Fenton, photoelectrooxidation, and photoelectro-Fenton processes | Ti/Ru0.3Ti0.7O2 anode, 0.05 M Na2SO4, pH 3, 100 mL of 100 mg L−1 GLY from Roundup® | 70% GLY removal and >80% chemical oxygen demand and TOC removal using the electro-Fenton and photoelectro-Fenton processes | [38] |
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Experimental Procedures
2.2.1. Determination of the Electrochemically Active Surface Area of the Graphite Rod Electrode
2.2.2. Effect of GLY Concentration: Open-Circuit Adsorption Experiments
2.3. Experimental Setup for GLY Degradation
2.4. Effect of Operational Parameters and Electrode Pretreatment on Glyphosate Degradation
2.5. Analytical Methods
3. Results and Discussion
3.1. Electrochemically Active Surface Area of the Graphite Rod Electrode
3.2. Effect of Glyphosate Concentration: Open-Circuit Adsorption and Double-Layer Capacitance Measurements
3.3. Superficial Analysis of the Electrodes
3.4. Effect of Electrochemical Pretreatment with Acetic Acid on GLY Oxidation and H2O2 Electrogeneration
3.5. Factorial Design: GLY Electrochemical Oxidation Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, D.; Soric, A.; Boutin, O. Treatment technologies and degradation pathways of glyphosate: A critical review. Sci. Total Environ. 2020, 742, 140559. [Google Scholar] [CrossRef] [PubMed]
- Beri, V.; Yaah, K.; Ahmadi, S.; Quimbayo, J.; Morales-Torres, S.; Ojala, S. Recent technologies for glyphosate removal from aqueous environment: A critical review. Environ. Res. 2024, 240, 117477. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Kier, L.D.; Kirkland, D.J. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit. Rev. Toxicol. 2013, 8444, 283–315. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.P.; Bleak, T.C.; Calaf, G.M. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere 2021, 270, 128619. [Google Scholar] [CrossRef]
- Andreotti, G.; Koutros, S.; Hofmann, J.N.; Sandler, D.P.; Lubin, J.H.; Lynch, C.F.; Lerro, C.C.; De Roos, A.J.; Parks, C.G.; Alavanja, M.C.; et al. Glyphosate Use and Cancer Incidence in the Agricultural Health Study. JNCI J. Natl. Cancer Inst. 2018, 110, 509–516. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef]
- Mahler, B.J.; Van Metre, P.C.; Burley, T.E.; Loftin, K.A.; Meyer, M.T.; Nowell, L.H. Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small Midwestern streams (USA) during the 2013 growing season. Sci. Total Environ. 2017, 579, 149–158. [Google Scholar] [CrossRef]
- Ruiz-Toledo, J.; Castro, R.; Rivero-Pérez, N.; Bello-Mendoza, R.; Sánchez, D. Occurrence of Glyphosate in Water Bodies Derived from Intensive Agriculture in a Tropical Region of Southern Mexico. Bull. Environ. Contam. Toxicol. 2014, 93, 289–293. [Google Scholar] [CrossRef]
- Sasal, M.C.; Wilson, M.G.; Sione, S.M.; Beghetto, S.M.; Gabioud, E.A.; Oszust, J.D.; Paravani, E.V.; Demonte, L.; Repetti, M.R.; Bedendo, D.J.; et al. Monitoring of glyphosate in surface water in the province of Entre Ríos. Participatory action research as a collaborative methodology. R. Investig. Agrop. 2017, 43, 195–205. [Google Scholar]
- Alza-Camacho, W.R.; García-Colmenares, J.M.; Chaparro-Acuña, S.P. Voltammetric Quantification of Paraquat and Glyphosate in Surface Waters. Cienc. Y Tecnol. Agropecu. 2016, 17, 331–345. [Google Scholar] [CrossRef]
- Silva, A.S.; TóTH, I.V.; Pezza, L.; Pezza, H.R.; Lima, J.L.F.C. Determination of Glyphosate in Water Samples by Multi-pumping Flow System Coupled to a Liquid Waveguide Capillary Cell. Anal. Sci. 2011, 27, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. 2008, 83, 769–776. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006, 35, 1324–1340. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Groenen-Serrano, K.; Weiss-Hortala, E.; Savall, A.; Spiteri, P. Role of Hydroxyl Radicals During the Competitive Electrooxidation of Organic Compounds on a Boron-Doped Diamond Anode. Electrocatalysis 2013, 4, 346–352. [Google Scholar] [CrossRef]
- García-Espinoza, J.D.; Robles, I.; Durán-Moreno, A.; Godínez, L.A. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review. Chemosphere 2021, 274, 129957. [Google Scholar] [CrossRef]
- García-Espinoza, J.D.; Mijaylova-Nacheva, P.; Avilés-Flores, M. Electrochemical carbamazepine degradation: Effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere 2018, 192, 142–151. [Google Scholar] [CrossRef]
- Kadji, H.; Yahiaoui, I.; Akkouche, F.; Boudrahem, F.; Ramdani, S.; Saidane, A.; Manseri, A.; Amrane, A.; Aissani-Benissad, F. Heterogeneous degradation of amoxicillin in the presence of synthesized alginate-Fe beads catalyst by the electro-Fenton process using a graphite cathode recovered from used batteries. Water Sci. Technol. 2022, 85, 1840–1854. [Google Scholar] [CrossRef] [PubMed]
- Lacasa, E.; Cotillas, S.; Saez, C.; Lobato, J.; Cañizares, P.; Rodrigo, M.A. Environmental applications of electrochemical technology. What is needed to enable full-scale applications ? Curr. Opin. Electrochem. 2019, 16, 149–156. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation. J. Hazard. Mater. 2008, 153, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. Electrochemical oxidation remediation of real wastewater effluents—A review. Process Saf. Environ. Prot. 2018, 113, 48–67. [Google Scholar] [CrossRef]
- Roubaud, E.; Lacroix, R.; Da Silva, S.; Esvan, J.; Etcheverry, L.; Bergel, A.; Basséguy, R.; Erable, B. Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater. iScience 2021, 24, 102162. [Google Scholar] [CrossRef]
- Burgess, R.; Buono, C.; Davies, P.R.; Davies, R.J.; Legge, T.; Lai, A.; Lewis, R.; Morgan, D.J.; Robinson, N.; Willock, D.J. The functionalisation of graphite surfaces with nitric acid: Identification of functional groups and their effects on gold deposition. J. Catal. 2015, 323, 10–18. [Google Scholar] [CrossRef]
- Guo, H.; Xu, H.; Zhao, C.; Hao, X.; Yang, Z.; Xu, W. High-effective generation of H2O2 by oxygen reduction utilizing organic acid anodized graphite felt as cathode. J. Ind. Eng. Chem. 2022, 108, 466–475. [Google Scholar] [CrossRef]
- Yu, P.; Lowe, S.E.; Simon, G.P.; Zhong, Y.L. Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 2015, 20, 329–338. [Google Scholar] [CrossRef]
- Destiarti, L.; Riyanto, R.; Roto, R.; Mudasir, M. Electrolyte effect in electrochemical exfoliation of graphite. Mater. Chem. Phys. 2023, 302, 127713. [Google Scholar] [CrossRef]
- Villalobos-Lara, A.D.; Rivera, F.F.; Paramo-Vargas, J.; Gamiño-Arroyo, Z.; Ruiz-Vera, T. Experimental and CFD simulation of glyphosate removal by a filter-press electrocoagulation reactor. J. Environ. Chem. Eng. 2023, 11, 111214. [Google Scholar] [CrossRef]
- Rubí-Juárez, H.; Cotillas, S.; Sáez, C.; Cañizares, P.; Barrera-Díaz, C.; Rodrigo, M.A. Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Appl. Catal. B Environ. 2016, 188, 305–312. [Google Scholar] [CrossRef]
- Tran, N.; Drogui, P.; Doan, T.L.; Le, T.S.; Chau, H. Electrochemical degradation and mineralization of glyphosate herbicide. Environ. Technol. 2017, 38, 2939–2948. [Google Scholar] [CrossRef] [PubMed]
- Lima, N.S.; Souza, É.M.; Torres, N.H.; Bergamasco, R.; Marques, M.N.; Garcia-Segura, S.; Sanchez de Alsina, O.L.; Cavalcanti, E.B. Relevance of adjuvants and additives of pesticide commercial formulation on the removal performance of glyphosate by electrochemically driven processes. J. Clean. Prod. 2019, 212, 837–846. [Google Scholar] [CrossRef]
- Berenguer, R.; Fernández-Aguirre, M.G.; Beaumont, S.; Huerta, F.; Morallón, E. Anodic abatement of glyphosate on Pt-doped SnO2—Sb electrodes promoted by pollutant-dopant electrocatalytic interactions. Chemosphere 2024, 346, 140635. [Google Scholar] [CrossRef]
- Lan, H.; He, W.; Wang, A.; Liu, R.; Liu, H.; Qu, J.; Huang, C.P. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Res. 2016, 105, 575–582. [Google Scholar] [CrossRef]
- Sánchez-Montes, I.; Pérez, J.F.; Sáez, C.; Rodrigo, M.A.; Cañizares, P.; Aquino, J.M. Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light. Chemosphere 2020, 238, 124575. [Google Scholar] [CrossRef]
- Alulema-Pullupaxi, P.; Fernández, L.; Debut, A.; Santacruz, C.P.; Villacis, W.; Fierro, C.; Espinoza-Montero, P.J. Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode. Chemosphere 2021, 278, 130488. [Google Scholar] [CrossRef]
- da Silva, V.E.C.; Tadayozzi, Y.S.; Putti, F.F.; Santos, F.A.; Forti, J.C. Degradation of commercial glyphosate-based herbicide via advanced oxidative processes in aqueous media and phytotoxicity evaluation using maize seeds. Sci. Total Environ. 2022, 840, 156656. [Google Scholar] [CrossRef]
- Morales, D.M.; Risch, M. Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys. Energy 2021, 3, 034013. [Google Scholar] [CrossRef]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Oturan, N.; Wang, Y.; Chen, L.; Oturan, M.A. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2—IrO2) anode. Chemosphere 2012, 87, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 978-1-119-49244-3. [Google Scholar]
- Treviño-Reséndez, J.d.J.; Mijaylova, P.; García-Espinoza, J.D. Influence of the operating parameters in the degradation of naphtalene and phenanthrene by electrooxidation. Rev. Int. Contam. Ambient. 2020, 36, 21–32. [Google Scholar] [CrossRef]
- Madi-Azegagh, K.; Yahiaoui, I.; Boudrahem, F.; Aissani-Benissad, F.; Vial, C.; Audonnet, F.; Favier, L. Applied of central composite design for the optimization of removal yield of the ketoprofen (KTP) using electrocoagulation process. Sep. Sci. Technol. 2019, 54, 3115–3127. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Eiband, M.M.S.G.; de Melo, J.V.; Martínez-Huitle, C.A. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. J. Electroanal. Chem. 2017, 801, 267–299. [Google Scholar] [CrossRef]
- Eisenberg, G.M. Colorimetric Determination of Hydrogen Peroxide. Ind. Eng. Chem. Anal. Ed. 1943, 15, 327–328. [Google Scholar] [CrossRef]
- Wong, A.; de Lima, D.G.; Ferreira, P.A.; Khan, S.; da Silva, R.A.B.; de Faria, J.L.B.; Del Pilar Taboada Sotomayor, M. Voltammetric sensing of glyphosate in different samples using carbon paste electrode modified with biochar and copper(II) hexadecafluoro-29H,31 phtalocyanine complex. J. Appl. Electrochem. 2021, 51, 761–768. [Google Scholar] [CrossRef]
- Survila, A.; Kanapeckaitė, S. On the application of electrogenerated copper ions in environmental analytical chemistry—The nature and properties of anodic current peaks. J. Electroanal. Chem. 2020, 862, 114035. [Google Scholar] [CrossRef]
- Oliveira, P.C.; Maximiano, E.M.; Oliveira, P.A.; Camargo, J.S.; Fiorucci, A.R.; Arruda, G.J. Direct electrochemical detection of glyphosate at carbon paste electrode and its determination in samples of milk, orange juice, and agricultural formulation. J. Environ. Sci. Health Part B 2018, 53, 817–823. [Google Scholar] [CrossRef]
- Volke, J.; Liška, F. Reactions of Organic Compounds at Electrodes BT—Electrochemistry in Organic Synthesis. In Electrochemical Reactions and Mechanisms in Organic Chemistry; Volke, J., Liška, F., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1994; pp. 45–139. ISBN 978-3-642-78699-0. [Google Scholar]
- Adenier, A.; Chehimi, M.M.; Gallardo, I.; Pinson, J.; Vilà, N. Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir 2004, 20, 8243–8253. [Google Scholar] [CrossRef]
- Bleda-Martínez, M.J.; Maciá-Agulló, J.A.; Lozano-Castelló, D.; Morallón, E.; Cazorla-Amorós, D.; Linares-Solano, A. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon N. Y. 2005, 43, 2677–2684. [Google Scholar] [CrossRef]
- Arvia, A.J.; Bolzán, A.E.; Pasquale, M.Á. Electrocatalysis—A Survey of Fundamental Concepts. In Catalysis in Electrochemistry: From Fundamentals to Strategies for Fuel Cell Development; Wieckowski, A., Santos, E., Schmickler, W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 17–65. [Google Scholar]
- Sheals, J.; Persson, P.; Hedman, B. IR and EXAFS Spectroscopic Studies of Glyphosate Protonation and Copper(II) Complexes of Glyphosate in Aqueous Solution. Inorg. Chem. 2001, 40, 4302–4309. [Google Scholar] [CrossRef] [PubMed]
- Jayasumana, C.; Gunatilake, S.; Senanayake, P. Glyphosate, Hard Water and Nephrotoxic Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown Etiology in Sri Lanka? Int. J. Environ. Res. Public Health 2014, 11, 2125–2147. [Google Scholar] [CrossRef] [PubMed]
- Bohinc, K.; Reščič, J.; Lue, L. Interactions between charged surfaces mediated by stiff, multivalent zwitterionic polymers. Soft Matter. 2016, 12, 4397–4405. [Google Scholar] [CrossRef] [PubMed]
- Khademi, M.; Barz, D.P.J. Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions. Langmuir 2020, 36, 4250–4260. [Google Scholar] [CrossRef]
- Ridwan, M.G.; Shrestha, B.R.; Maharjan, N.; Mishra, H. Zwitterions Layer at but Do Not Screen Electrified Interfaces. J. Phys. Chem. B 2022, 126, 1852–1860. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Zine, N.; Errachid, A.; Jaffrezic-Renault, N. Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena. Molecules 2022, 27, 493. [Google Scholar] [CrossRef]
- Tolman, N.L.; Mukai, J.M.; Wang, S.; Zito, A.; Luo, T.; Liu, H. The effect of physical adsorption on the capacitance of activated carbon electrodes. Carbon N. Y. 2019, 150, 334–339. [Google Scholar] [CrossRef]
- Frackowiak, E.; Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon N. Y. 2001, 39, 937–950. [Google Scholar] [CrossRef]
- Bolzán, A.E.; Arvia, A.J. Chapter Nineteen—Electrochemical Behavior of Carbon Materials. In Adsorption by Carbons; Bottani, E.J., Tascón, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 479–512. ISBN 978-0-08-044464-2. [Google Scholar]
- Gong, L.; Xiang, L.; Zhang, J.; Han, L.; Wang, J.; Wang, X.; Liu, J.; Yan, B.; Zeng, H. Interaction Mechanisms of Zwitterions with Opposite Dipoles in Aqueous Solutions. Langmuir 2019, 35, 2842–2853. [Google Scholar] [CrossRef]
- Fuson, N.; Josien, M.-L.; Shelton, E.M. An Infrared Spectroscopic Study of the Carbonyl Stretching Frequency in Some Groups of Ketones and Quinones. J. Am. Chem. Soc. 1954, 76, 2526–2533. [Google Scholar] [CrossRef]
- Oliveira, L.S.; Alba, J.F.G.; Silva, V.L.; Ribeiro, R.T.; Falcão, E.H.L.; Navarro, M. The effect of surface functional groups on the performance of graphite powders used as electrodes. J. Electroanal. Chem. 2018, 818, 106–113. [Google Scholar] [CrossRef]
- Kaitano, H.; Mudono, S. Investigating on a Process Method of Beneficiating and Increasing the Graphite Purity to 99% Grade. JASMI 2023, 13, 39–52. [Google Scholar] [CrossRef]
- Treviño-Reséndez, J.; Grajales, N.; Medel, A.; Sirés, I.; Meas, Y. Generation of hydroxyl radicals in the peroxi-coagulation process with an air-diffusion cathode: Fluorescence analysis and kinetic modeling. Process Saf. Environ. Prot. 2023, 172, 16–26. [Google Scholar] [CrossRef]
- An, J.; Feng, Y.; Zhao, Q.; Wang, X.; Liu, J.; Li, N. Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. Environ. Sci. Ecotechnol. 2022, 11, 100170. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, J.; Zhang, Y.; Lei, L. A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in Electro-Fenton system. Sep. Purif. Technol. 2008, 64, 116–123. [Google Scholar] [CrossRef]
- Khataee, A.R.; Safarpour, M.; Zarei, M.; Aber, S. Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: Investigation of operational parameters. J. Electroanal. Chem. 2011, 659, 63–68. [Google Scholar] [CrossRef]
- Zhao, Y.; Hojabri, S.; Sarrouf, S.; Alshawabkeh, A.N. Electrogeneration of H2O2 by graphite felt double coated with polytetrafluoroethylene and polydimethylsiloxane. J. Environ. Chem. Eng. 2022, 10, 108024. [Google Scholar] [CrossRef]
- Leyva-Ruiz, D.; Treviño-Reséndez, J.; Godínez, L.A.; Robles, I.; Acosta-Santoyo, G.; García-Espinoza, J.D. Electrochemical degradation of carbamazepine in water by a flow-through and pilot-scale reactor with carbon felt electrodes: Parametric study under realistic operational conditions. J. Environ. Chem. Eng. 2024, 12, 113232. [Google Scholar] [CrossRef]
- Rusu, M.M.; Fort, C.I.; Vulpoi, A.; Barbu-Tudoran, L.; Baia, M.; Cotet, L.C.; Baia, L. Ultrasensitive Electroanalytical Detection of Pb2+ and H2O2 Using Bi and Fe—Based Nanoparticles Embedded into Porous Carbon Xerogel—The Influence of Nanocomposite Pyrolysis Temperatures. Gels 2023, 9, 868. [Google Scholar] [CrossRef]
- Fort, C.I.; Rusu, M.M.; Cotet, L.C.; Vulpoi, A.; Todea, M.; Baia, M.; Baia, L. The Impact of Ar or N2 Atmosphere on the Structure of Bi-Fe-Carbon Xerogel Based Composites as Electrode Material for Detection of Pb2+ and H2O2. Gels 2024, 10, 230. [Google Scholar] [CrossRef]
- Chu, L.; Sun, Z.; Cang, L.; Wang, X.; Fang, G.; Gao, J. Identifying the roles of oxygen-containing functional groups in carbon materials for electrochemical synthesis of H2O2. J. Environ. Chem. Eng. 2023, 11, 109826. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, Y.; Wu, Q. Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology. J. Hazard. Mater. 2007, 144, 499–505. [Google Scholar] [CrossRef]
Exp. | Operational Parameters | |||||||
---|---|---|---|---|---|---|---|---|
A | B | C | GLY Degradation (%) | SEC | OC | |||
Current Density (mA cm−2) | Electrolysis Time (min) | Electrochemical Pretreatment | Actual Response 1 | Actual Response 2 | Predicted Response | (kWh g−1 GLY) | (USD m−3) | |
1 | 5 | 20 | No | 17 | 13 | 16 | 1.25 × 10−2 | 0.047 |
2 | 15 | 20 | No | 16 | 17 | 15 | 5.43 × 10−2 | 0.181 |
3 | 5 | 60 | No | 37 | 28 | 31 | 1.83 × 10−2 | 0.116 |
4 | 15 | 60 | No | 18 | 13 | 17 | 1.10 × 10−1 | 0.549 |
5 | 5 | 20 | Yes | 14 | 19 | 15 | 1.03 × 10−3 | 0.035 |
6 | 15 | 20 | Yes | 14 | 19 | 18 | 5.31 × 10−2 | 0.141 |
7 | 5 | 60 | Yes | 50 | 39 | 46 | 1.20 × 10−2 | 0.104 |
8 | 15 | 60 | Yes | 34 | 37 | 34 | 6.48 × 10−2 | 0.426 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 1870.88 | 6.00 | 311.81 | 16.12 | 0.0002 |
A | 150.06 | 1.00 | 150.06 | 7.76 | 0.0212 |
B | 1008.06 | 1.00 | 1008.06 | 52.12 | <0.0001 |
C | 280.56 | 1.00 | 280.56 | 14.51 | 0.0042 |
AB | 189.06 | 1.00 | 189.06 | 9.78 | 0.0122 |
AC | 10.56 | 1.00 | 10.56 | 0.55 | 0.4787 |
BC | 232.56 | 1.00 | 232.56 | 12.02 | 0.0071 |
Residual | 174.06 | 9.00 | 19.34 | ||
Cor Total | 2044.94 | 15 | R2 = | 0.9149 | |
R2 adjusted = | 0.8581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treviño-Reséndez, J.; Soto-Hernández, E.; Godínez, L.A.; Robles, I.; Meas Vong, Y.; García-Espinoza, J.D. Electrochemical Oxidation of Glyphosate Using Graphite Rod Electrodes: Impact of Acetic Acid Pretreatment on Degradation Efficiency. Processes 2024, 12, 2359. https://doi.org/10.3390/pr12112359
Treviño-Reséndez J, Soto-Hernández E, Godínez LA, Robles I, Meas Vong Y, García-Espinoza JD. Electrochemical Oxidation of Glyphosate Using Graphite Rod Electrodes: Impact of Acetic Acid Pretreatment on Degradation Efficiency. Processes. 2024; 12(11):2359. https://doi.org/10.3390/pr12112359
Chicago/Turabian StyleTreviño-Reséndez, José, Erick Soto-Hernández, Luis A. Godínez, Irma Robles, Yunny Meas Vong, and Josué D. García-Espinoza. 2024. "Electrochemical Oxidation of Glyphosate Using Graphite Rod Electrodes: Impact of Acetic Acid Pretreatment on Degradation Efficiency" Processes 12, no. 11: 2359. https://doi.org/10.3390/pr12112359
APA StyleTreviño-Reséndez, J., Soto-Hernández, E., Godínez, L. A., Robles, I., Meas Vong, Y., & García-Espinoza, J. D. (2024). Electrochemical Oxidation of Glyphosate Using Graphite Rod Electrodes: Impact of Acetic Acid Pretreatment on Degradation Efficiency. Processes, 12(11), 2359. https://doi.org/10.3390/pr12112359