A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents
2.3. Samples
2.4. Determination of Chloride in Crude Oil for Comparison Purposes and Accuracy Evaluation
2.4.1. Salt Determination by ASTM D 6470
2.4.2. Chloride Determination Using DSS-EA
2.5. Sample Preparation and Colorimetric Chloride Determination
3. Results and Discussion
3.1. General Optimization of Sample Preparation for Colorimetric Chloride Determination: Optimizing the Conditions for an Aqueous Extract
3.2. Colorimetric Analysis of Chloride in Crude Oil Aqueous Extracts: Combining Miniaturized Extraction Protocol and the Portable Device for Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groysman, A. Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, FL, USA, 2006; Volume 5, p. 953. [Google Scholar]
- ASTM D 6470; Standard Test Method for Salts in Crude Oil (Potentiometric Method). American Society for Testing Materials: West Conshohocken, PA, USA, 2015.
- ASTM D 3230; Standard Test Method for Salts in Crude Oil (Electrometric Method). American Society for Testing Materials: West Conshohocken, PA, USA, 2019.
- Morigaki, M.K.; Chimin, R.Q.F.; Sad, C.M.S.; Filgueiras, P.R.; Castro, E.V.R.; Dias, J.C.M. Salinity of crude oil: Optimization of methodology and new method for extraction of salt in petroleum. Quim. Nova 2010, 33, 607–612. [Google Scholar] [CrossRef]
- Moraes, D.P.; Antes, F.G.; Pereira, J.S.F.; Santos, M.D.F.P.; Guimarães, R.C.L.; Barin, J.S.; Mesko, M.F.; Paniz, J.N.G.; Flores, E.M.M. Microwave-assisted procedure for salinity evaluation of heavy crude oil emulsions. Energy Fuels 2010, 24, 2227–2232. [Google Scholar] [CrossRef]
- Robaina, N.F.; Feiteira, F.N.; Cassella, A.R.; Cassella, R.J. Determination of chloride in brazilian crude oils by ion chromatography after extraction induced by emulsion breaking. J. Chromatogr. A 2016, 1458, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.F.; Cassella, A.R.; Cassella, R.J. Microwave-Assisted Extraction of Chloride Followed by Ion Chromatography as an Alternative to the ASTM D6470 Method for the Determination of Crude Oil Salinity. Energy Fuels 2020, 34, 6844–6850. [Google Scholar] [CrossRef]
- Antes, F.G.; dos Santos, M.D.P.; Guimaraes, R.C.L.; Paniz, J.N.G.; Flores, E.M.M.; Dressler, V.L. Heavy crude oil sample preparation by pyrohydrolysis for further chlorine determination. Anal. Methods 2011, 3, 288–293. [Google Scholar] [CrossRef]
- Pereira, J.S.F.; Mello, P.A.; Moraes, D.P.; Duarte, F.A.; Dressler, V.L.; Knapp, G.; Flores, É.M.M. Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 554–558. [Google Scholar] [CrossRef]
- Nelson, J.; Poirier, L.; Lopez-Linares, F. Determination of chloride in crude oils by direct dilution using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). J. Anal. At. Spectrom. 2019, 34, 1433–1438. [Google Scholar] [CrossRef]
- Fortuny, M.; Silva, E.B.; Filho, A.C.; Melo, R.L.F.V.; Nele, M.; Coutinho, R.C.C.; Santos, A.F. Measuring salinity in crude oils: Evaluation of methods and an improved procedure. Fuel 2008, 87, 1241–1248. [Google Scholar] [CrossRef]
- Higa, K.M.; Guilhen, A.; Vieira, L.C.S.; Carvalho, R.M.; Poppi, R.J.; Baptistão, M.; Gobbi, A.L.; Lima, R.S.; Hantao, L.W. Simple solid-phase extraction method for high efficiency and low-cost crude oil demulsification. Energy Fuels 2016, 30, 4667–4675. [Google Scholar] [CrossRef]
- Sad, C.M.S.; Santana, Í.L.; Morigaki, M.K.; Medeiros, E.F.; Castro, E.V.R.; Santos, M.F.P.; Filgueiras, P.R. New methodology for heavy oil desalination. Fuel 2015, 150, 705–710. [Google Scholar] [CrossRef]
- Diehl, L.O.; Moraes, D.P.; Antes, F.G.; Pereira, J.S.F.; Santos, M.F.P.; Guimarães, R.C.L.; Paniz, J.N.G.; Flores, E.M.M. Separation of heavy crude oil emulsions using microwave radiation for further crude oil analysis. Sep. Sci. Technol. 2011, 46, 1358–1364. [Google Scholar] [CrossRef]
- Doyle, A.; Saavedra, A.; Tristao, M.L.B.; Nele, M.; Aucélio, R.Q. Direct chlorine determination in crude oils by energy dispersive X-ray fluorescence spectrometry: An improved method based on a proper strategy for sample homogenization and calibration with inorganic standards. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 368–372. [Google Scholar] [CrossRef]
- Hajian, R.; Oroojloo, A.H.; Mousavian, S.S.; Shams, N. Determination of Sodium Chloride in Crude Oil of Gachsaran County Oil Wells. Asian J. Chem. 2011, 23, 4223–4224. [Google Scholar]
- de Oliveira Souza, M.; Ribeiro, M.A.; Carneiro, M.T.W.D.; Athayde, G.P.B.; de Castro, E.V.R.; da Silva, F.L.F.; Matos, W.O.; de Queiroz Ferreira, R. Evaluation and determination of chloride in crude oil based on the counterions Na, Ca, Mg, Sr and Fe, quantified via ICP-OES in the crude oil aqueous extract. Fuel 2015, 154, 181–187. [Google Scholar] [CrossRef]
- Ramos, A.C.O.P.; Caldeira, G.R.F.; Nunes, C.R.O.; Terra, W.S.; Souza, M.O. Optimization of extraction induced by emulsion breaking variables for subsequent determination of crude oil salinity by ion chromatography. J. Braz. J. Anal. Chem. 2020, 7, 31–39. [Google Scholar] [CrossRef]
- Aly, A.A.; Górecki, T. Green approaches to sample preparation based on extraction techniques. Molecules 2020, 25, 1719. [Google Scholar] [CrossRef]
- Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green analytical chemistry: Social dimension and teaching. TrAC Trends Anal. Chem. 2019, 111, 185–196. [Google Scholar] [CrossRef]
- Chemat, F.; Garrigues, S.; de la Guardia, M. Portability in analytical chemistry: A green and democratic way for sustainability. Curr. Opin. Green Sustain. Chem. 2019, 19, 94–98. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green extraction techniques in green analytical chemistry. TrAC Trends Anal. Chem. 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Bizzi, C.; Pedrotti, M.; Silva, J.; Barin, J.; Nóbrega, J.; Flores, E. Microwave-assisted digestion methods: Towards greener approaches for plasma-based analytical techniques. J. Anal. At. Spectrom. 2017, 32, 1448–1466. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Guardia, M.; Garrigues, S. Handbook of Green Analytical Chemistry, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green analytical chemistry—Theory and practice. Chem. Soc. Rev. 2010, 39, 2869–2878. [Google Scholar] [CrossRef] [PubMed]
- Armenta, S.; de la Guardia, M. Green Spectroscopy: A Scientometric Picture. Spectrosc. Lett. 2009, 42, 277–283. [Google Scholar] [CrossRef]
- Namieśnik, J. Green analytical chemistry—Some remarks. J. Sep. Sci. 2001, 24, 151–153. [Google Scholar] [CrossRef]
- Shi, M.; Zheng, X.; Zhang, N.; Guo, Y.; Liu, M.; Yin, L. Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods. TrAC Trends Anal. Chem. 2023, 166, 117211. [Google Scholar] [CrossRef]
- Diniz, P.H.G.D. Chemometrics-assisted color histogram-based analytical systems. J. Chemom. 2020, 34, e3242. [Google Scholar] [CrossRef]
- Baumann, L.; Librelotto, M.; Pappis, C.; dos Santos, R.B.; Santos, R.O.; Helfer, G.A.; Lobo, E.A.; da Costa, A.B. Uso do aplicativo PhotoMetrix no monitoramento da concentração de flúor em sistemas alternativos de abastecimento de água. Águas Subterrâneas 2019, 33. [Google Scholar] [CrossRef]
- McCracken, K.; Yoon, J.-Y. Recent approaches for optical smartphone sensing in resource-limited settings: A brief review. Anal. Methods 2016, 8, 6591–6601. [Google Scholar] [CrossRef]
- Costa, A.B.; Helfer, G.A.; Barbosa, J.L.V.; Teixeira, I.D.; Santos, R.O.; Santos, R.B.; Voss, M.; Schlessner, S.K.; Barin, J.S. PhotoMetrix UVC: A new smartphone-based device for digital image colorimetric analysis using PLS regression. J. Braz. Chem. Soc. 2021, 32, 675–683. [Google Scholar] [CrossRef]
- Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. TrAC Trends Anal. Chem. 2008, 27, 497–511. [Google Scholar] [CrossRef]
- Holkem, A.P.; Voss, M.; Schlesner, S.K.; Helfer, G.A.; Costa, A.B.; Barin, J.S.; Müller, E.I.; Mello, P.A. A green and high throughput method for salt determination in crude oil using digital image-based colorimetry in a portable device. Fuel 2021, 289, 119941. [Google Scholar] [CrossRef]
- Silva, J.S.; Diehl, L.O.; Picoloto, R.S.; Flores, E.M.M.; Mesko, M.F.; Barin, J.S.; Duarte, F.A. A solid sampling approach for direct determination of Cl and S in flour by an elemental analyzer. Food Chem. 2021, 344, 128671. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namieśnik, J.; Pena-Pereira, F. A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem. 2015, 17, 4773–4785. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2015, 18, 288–296. [Google Scholar] [CrossRef]
- Enders, M.S.P.; Gomes, A.O.; Oliveira, R.F.; Guimaraes, R.C.L.; Mesko, M.F.; Flores, E.M.M.; Müller, E.I. Determination of chlorine in crude oil by high-resolution continuum source graphite furnace molecular absorption spectrometry using AlCl, InCl, and SrCl molecules. Energy Fuels 2016, 30, 3637–3643. [Google Scholar] [CrossRef]
- Oliveira, I.K.S.; Medeiros, R.L.S.; Silva, D.R.; Maranhão, T.A. Determination of chlorine in crude oil emulsified via the MgCl molecule by HR-CS MAS. J. Braz. Chem. Soc. 2018, 29, 571–578. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
Sample | Water, % (w w−1) | Sediment, % (w w−1) | Salt, % (w w−1) a | Chloride, mg g−1 |
---|---|---|---|---|
CO1 | 2.52 ± 0.05 | 1.15 ± 0.12 | 0.685 ± 0.067 | 4.16 ± 0.41 |
CO2 | 2.77 ± 0.16 | 0.96 ± 0.17 | 0.915 ± 0.084 | 5.56 ± 0.51 |
CO3 | 8.22 ± 0.02 | 0.558 ± 0.032 | nd | nd |
CO4 | 5.55 ± 0.03 | 0.864 ± 0.014 | nd | nd |
CO5 | 8.74 ± 0.14 | 3.42 ± 0.14 | 2.78 ± 0.09 | 16.8 ± 1.9 |
CO6 | 3.48 ± 0.01 | 0.708 ± 0.073 | 0.539 ± 0.038 | 3.27 ± 0.23 |
CO7 | 6.49 ± 0.10 | 2.33 ± 0.19 | 0.950 ± 0.09 | 5.77 ± 0.56 |
CO8 | 2.15 ± 0.01 | 0.168 ± 0.012 | 0.560 ± 0.132 | 3.40 ± 0.80 |
Condition | Extraction Efficiency, % | |
---|---|---|
Crude Oil CO1 | Crude Oil CO2 | |
Mineral oil | 69.1 ± 4.7 | 10.5 ± 1.7 |
Kerosene | 43.4 ± 3.3 | 30.7 ± 4.5 |
Toluene | 71.0 ± 4.2 | 53.0 ± 0.1 |
Xylene | 93.7 ± 4.4 | 48.2 ± 6.0 |
Ethyl acetate | 97.6 ± 3.8 | 98.1 ± 0.8 |
Acetone | 99.2 ± 5.0 | 106 ± 5 |
Isopropyl alcohol | 108 ± 4 | 97.4 ± 3.7 |
Without solvent | 23.3 ± 4.0 | 0.964 ± 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holkem, A.P.; Agostini, G.; Costa, A.B.; Barin, J.S.; Mello, P.A. A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis. Processes 2024, 12, 2425. https://doi.org/10.3390/pr12112425
Holkem AP, Agostini G, Costa AB, Barin JS, Mello PA. A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis. Processes. 2024; 12(11):2425. https://doi.org/10.3390/pr12112425
Chicago/Turabian StyleHolkem, Alice P., Giuliano Agostini, Adilson B. Costa, Juliano S. Barin, and Paola A. Mello. 2024. "A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis" Processes 12, no. 11: 2425. https://doi.org/10.3390/pr12112425
APA StyleHolkem, A. P., Agostini, G., Costa, A. B., Barin, J. S., & Mello, P. A. (2024). A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis. Processes, 12(11), 2425. https://doi.org/10.3390/pr12112425