Advanced Sliding Mode Design for Optimal Automatic Generation Control in Multi-Area Multi-Source Power System Considering HVDC Link
Abstract
:1. Introduction
2. Methods and Materials
2.1. The Mathematical Representation of the Related Multi-Area Power Plant
2.2. Single-Phase Sliding Surface
2.3. Integral Sliding Mode Control with Single-Phase Design
3. Results and Discussion
3.1. Scenario 1
3.2. Scenario 2
3.3. Scenario 3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Vittal, V.; McCalley, J.D.; Anderson, P.M.; Fouad, A.A. Power System Control and Stability; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Hussein, T.; Shamekh, A. Design of PI fuzzy logic gain scheduling load frequency control in two-area power systems. Designs 2019, 3, 26. [Google Scholar] [CrossRef]
- Sun, J.; Chen, M.; Kong, L.; Hu, Z.; Veerasamy, V. Regional load frequency control of BP-PI wind power generation based on particle swarm optimization. Energies 2023, 16, 2015. [Google Scholar] [CrossRef]
- Ibraheem, M.I.; Edrisi, M.; Gholipour, M.; Alhelou, H.H. A novel frequency regulation in islanded microgrid using sliding mode control with disturbance observers considering storages and EVs. Comput. Electr. Eng. 2023, 105, 108537. [Google Scholar] [CrossRef]
- Alhelou, H.H.; Nagpal, N.; Kassarwani, N.; Siano, P. Decentralized optimized integral sliding mode-based load frequency control for interconnected multi-area power systems. IEEE Access 2023, 11, 32296–32307. [Google Scholar] [CrossRef]
- Tran, A.T.; Duong, M.P.; Pham, N.T.; Shim, J.W. Enhanced sliding mode controller design via meta-heuristic algorithm for robust and stable load frequency control in multi-area power systems. IET Gener. Transm. Distrib. 2024, 18, 460–478. [Google Scholar] [CrossRef]
- Farivar, F.; Bass, O.; Habibi, D. Memory-Based Adaptive Sliding Mode Load Frequency Control in Interconnected Power Systems with Energy Storage. IEEE Access 2023, 11, 102515–102530. [Google Scholar] [CrossRef]
- Tuan, D.H.; Pidanic, J.; Van Huynh, V.; Duy, V.H.; Nhan NH, K. Sliding mode without reaching phase design for automatic load frequency control of multi-time delays power system. IEEE Access 2024, 12, 110052–110063. [Google Scholar] [CrossRef]
- Ansari, J.; Homayounzade, M.; Abbasi, A.R. Load frequency control in power systems by a robust backstepping sliding mode controller design. Energy Rep. 2023, 10, 1287–1298. [Google Scholar] [CrossRef]
- Farivar, F.; Bass, O.; Habibi, D. Decentralized disturbance observer-based sliding mode load frequency control in multiarea interconnected power systems. IEEE Access 2022, 10, 92307–92320. [Google Scholar] [CrossRef]
- Bevrani, H. Robust Power System Frequency Control; Springer: New York, NY, USA, 2014. [Google Scholar]
- Liu, X.; Su, X.; Li, T. Load frequency composite control for multi-region interconnected power systems. J. Frankl. Inst. 2023, 360, 4784–4806. [Google Scholar] [CrossRef]
- Ahmed Mohammed, O.A.; Peng, L.; Amran, G.A.; AlSalman, H.; Ali Abdalla, M.A.; Alkawmani, O.; Mursil, M.; Saleh, B. Optimal α-variable model-free adaptive barrier function fractional order nonlinear sliding mode control for four area interconnected hybrid power system with nonlinearities. IEEE Access 2024, 12, 61586–61609. [Google Scholar] [CrossRef]
- Patel, A.; Purwar, S. Design of event trigger based multirate sliding mode load frequency controller for interconnected power system. ISA Trans. 2023, 137, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Das, D.K. Sliding mode controller design via delay-dependent H∞ stabilization criterion for load frequency regulation. Prot. Control. Mod. Power Syst. 2023, 8, 49. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Yu, X.; Zhang, H. Jointed Observer-Based Sliding Mode Predictive Control for Interconnected Power Systems with Input Delays. IEEE Trans. Autom. Sci. Eng. 2024; early access. [Google Scholar]
- Guo, J. Application of full order sliding mode control based on different areas power system with load frequency control. ISA Trans. 2019, 92, 23–34. [Google Scholar] [CrossRef]
- Elsaied, M.M.; Abdel Hameed, W.H.; Hasanien, H.M.; Tostado-Véliz, M.; Al-Ammar, E.A.; Jurado, F. Optimal sliding mode control for frequency stabilization of hybrid renewable energy systems. IET Renew. Power Gener. 2023, 17, 2815–2834. [Google Scholar] [CrossRef]
- Lv, X.; Sun, Y.; Cao, S.; Dinavahi, V. Event-triggered load frequency control for multi-area power systems based on Markov model: A global sliding mode control approach. IET Gener. Transm. Distrib. 2020, 14, 4878–4887. [Google Scholar] [CrossRef]
- Kumar, A.; Anwar, M.N.; Kumar, S. Sliding mode controller design for frequency regulation in an interconnected power system. Prot. Control. Mod. Power Syst. 2021, 6, 1–12. [Google Scholar] [CrossRef]
- Guo, J. Application of a novel adaptive sliding mode control method to the load frequency control. Eur. J. Control. 2021, 57, 172–178. [Google Scholar] [CrossRef]
- Yang, F.; Shen, Y.; Li, D.; Lin, S.; Muyeen, S.M.; Zhai, H.; Zhao, J. Fractional-order sliding mode load frequency control and stability analysis for interconnected power systems with time-varying delay. IEEE Trans. Power Syst. 2023, 39, 1006–1018. [Google Scholar] [CrossRef]
- Tran, A.T.; Minh BL, N.; Huynh, V.V.; Tran, P.T.; Amaefule, E.N.; Phan, V.D.; Nguyen, T.M. Load frequency regulator in interconnected power system using second-order sliding mode control combined with state estimator. Energies 2021, 14, 863. [Google Scholar] [CrossRef]
- Huynh, V.V.; Minh BL, N.; Amaefule, E.N.; Tran, A.T.; Tran, P.T. Highly robust observer sliding mode based frequency control for multi area power systems with renewable power plants. Electronics 2021, 10, 274. [Google Scholar] [CrossRef]
- Al-Majidi, S.D.; Altai HD, S.; Lazim, M.H.; Al-Nussairi, M.K.; Abbod, M.F.; Al-Raweshidy, H.S. Bacterial Foraging Algorithm for a Neural Network Learning Improvement in an Automatic Generation Controller. Energies 2023, 16, 2802. [Google Scholar] [CrossRef]
- Abdel-hamed, A.M.; Abdelaziz, A.Y.; El-Shahat, A. Design of a 2DOF-PID control scheme for frequency/power regulation in a two-area power system using dragonfly algorithm with integral-based weighted goal objective. Energies 2023, 16, 486. [Google Scholar] [CrossRef]
- Gbadega, P.A.; Sun, Y. Multi-area automatic generation control of a renewable energy-based hybrid power systems using JAYA optimized model predictive control. Energy Rep. 2023, 9, 74–84. [Google Scholar] [CrossRef]
- Arya, Y.; Ahmad, R.; Nasiruddin, I.; Ahmer, M.F. LFC performance advancement of two-area RES penetrated multi-source power system utilizing CES and a new CFOTID controller. J. Energy Storage 2024, 87, 111366. [Google Scholar] [CrossRef]
- Park, J.H. (Ed.) Recent Advances in Control Problems of Dynamical Systems and Networks; Springer International Publishing: Berlin, Germany, 2021. [Google Scholar]
Measurement | The Suggested Approach | The New Approach in [1] | ||
---|---|---|---|---|
Ts (s) | MO (Hz) | Ts (s) | MO (Hz) | |
1.3 | 0.0028 | 8.5 | 0.0134 | |
1.1 | 0.0007 | 5.5 | 0.013 |
Measurement | The Suggested Approach | The New Approach in [1] | ||
---|---|---|---|---|
Ts (s) | MO (Hz) | Ts (s) | MO (Hz) | |
3 | 0.0019 | 5.5 | 0.04 | |
4 | 0.002 | 5.6 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuan, D.H.; Tran, A.-T.; Huynh, V.V.; Duy, V.H.; Nhan, N.H.K. Advanced Sliding Mode Design for Optimal Automatic Generation Control in Multi-Area Multi-Source Power System Considering HVDC Link. Processes 2024, 12, 2426. https://doi.org/10.3390/pr12112426
Tuan DH, Tran A-T, Huynh VV, Duy VH, Nhan NHK. Advanced Sliding Mode Design for Optimal Automatic Generation Control in Multi-Area Multi-Source Power System Considering HVDC Link. Processes. 2024; 12(11):2426. https://doi.org/10.3390/pr12112426
Chicago/Turabian StyleTuan, Dao Huy, Anh-Tuan Tran, Van Van Huynh, Vo Hoang Duy, and Nguyen Huu Khanh Nhan. 2024. "Advanced Sliding Mode Design for Optimal Automatic Generation Control in Multi-Area Multi-Source Power System Considering HVDC Link" Processes 12, no. 11: 2426. https://doi.org/10.3390/pr12112426
APA StyleTuan, D. H., Tran, A. -T., Huynh, V. V., Duy, V. H., & Nhan, N. H. K. (2024). Advanced Sliding Mode Design for Optimal Automatic Generation Control in Multi-Area Multi-Source Power System Considering HVDC Link. Processes, 12(11), 2426. https://doi.org/10.3390/pr12112426