Analysis of Influence of Excitation Source Direction on Sound Transmission Loss Simulation Based on Alloy Steel Phononic Crystal
Abstract
:1. Introduction
2. Simulated Model Energy Band and Simulation Calculation Method for XY-Direction Transmission Loss
2.1. Band Structure
2.2. Transmission Loss
3. Z-Direction Transmission Loss Simulation Model and Z-Direction Excitation Source Setting
4. Numerical Results and Discussion
4.1. Band Gap Numerical Results and Energy Band Data Analysis
4.2. TL Data Analysis Under Different Excitation Sources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [PubMed]
- Sigalas, M.M.; Economou, E.N. Elastic and acoustic wave band structure. J. Sound Vib. 1992, 158, 377–382. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Martinez, G. Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B Condens. Matter 1994, 49, 2313–2322. [Google Scholar] [CrossRef]
- Liu, Z. Locally Resonant Sonic Materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef]
- Xiao, X.; He, Z.; Li, E.; Cheng, A. Design multi-stopband laminate acoustic metamaterials for structural-acoustic coupled system. Mech. Syst. Signal Process. 2019, 115, 418–433. [Google Scholar] [CrossRef]
- Medrano, H.A.; Gallegos, C.G.; Suárez, A.M.; Aguilar, H.P. Calculation of band structures of a phononic crystal within a waveguide in 3D with cubic inclusions using a Periodic Green’s Function Method. J. Phys. Conf. Ser. 2019, 1221, 12011. [Google Scholar] [CrossRef]
- Wormser, M.; Wein, F.; Stingl, M.; Körner, C. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization. Materials 2017, 10, 1125. [Google Scholar] [CrossRef]
- Miniaci, M.; Mazzotti, M.; Radzieński, M.; Kherraz, N.; Kudela, P.; Ostachowicz, W.; Morvan, B.; Bosia, F.; Pugno, N.M. Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide. Front. Mater. 2018, 5, 8. [Google Scholar] [CrossRef]
- Ye, L.; Cody, G.; Zhou, M.; Sheng, P.; Norris, A.N. Observation of bending wave localization and quasi mobility edge in two dimensions. Phys. Rev. Lett. 1992, 69, 3080–3083. [Google Scholar] [CrossRef]
- Shao, H.-B.; Chen, G.-P.; He, H.; Jiang, J.-H. Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals. Chin. Phys. B 2018, 27, 126301. [Google Scholar] [CrossRef]
- Saeki, M.; Mizoguchi, T.; Bitoh, M. Particle damping: Noise characteristics and large-scale simulation. J. Vib. Control. 2017, 24, 3920–3930. [Google Scholar] [CrossRef]
- Gnanasambandham, C.; Stender, M.; Hoffmann, N.; Eberhard, P. Multi-Scale Dynamics of Particle Dampers using Wavelets: Extracting Particle Activity Metrics from Ring Down Experiments. J. Sound Vib. 2019, 454, 1–13. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, Z.; Pan, T.; Li, J. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load. Mech. Syst. Signal Process. 2018, 98, 1116–1131. [Google Scholar] [CrossRef]
- Snoun, C.; Trigui, M. Design parameters optimization of a particles impact damper. Int. J. Interact. Des. Manuf. (IJIDeM) 2018, 12, 1283–1297. [Google Scholar] [CrossRef]
- Li, H.U.; Di, T.U.; Liang, Y.A.N.G. Experimental investigation on dynamic properties of particle damping under electromagnetic field. J. Vib. Shock. 2017, 36, 41–46. [Google Scholar]
- Pelekh, Y.; Konyk, I.; Hlobchak, M.; Cherchyk, G.; Opalko, V.; Diveyev, B. Optimization of the Particle Vibration Absorbers as SDOF Systems. In Proceedings of the 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, Ukraine, 20–23 April 2017; pp. 157–160. [Google Scholar]
- Yu, D.-L.; Du, C.-Y.; Shen, H.-J.; Liu, J.-W.; Wen, J.-H. An Analysis of Structural-Acoustic Coupling Band Gaps in a Fluid-Filled Periodic Pipe. Chin. Phys. Lett. 2017, 34, 198–202. [Google Scholar] [CrossRef]
- Bao, B.; Guyomar, D.; Lallart, M. Electron–phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control. Smart Mater. Struct. 2016, 25, 95010. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Y.; Liu, Y.; Lv, L.; Peng, F.; Wang, L. Extending and lowering band gaps by multilayered locally resonant phononic crystals. Appl. Acoust. 2018, 133, 97–106. [Google Scholar] [CrossRef]
- Li, S.; Dou, Y.; Chen, T.; Xu, J.; Li, B.; Zhang, F. Designing a broad locally-resonant bandgap in a phononic crystals. Phys. Lett. A 2019, 383, 1371–1377. [Google Scholar] [CrossRef]
- Saffari, P.R.; Sirimontree, S.; Thongchom, C.; Jearsiripongkul, T.; Saffari, P.R.; Keawsawasvong, S. Effect of Uniform and Nonuniform Temperature Distributions on Sound Transmission Loss of Double-Walled Porous Functionally Graded Magneto-Electro-Elastic Sandwich Plates with Subsonic External Flow. Int. J. Thermofluids 2023, 17, 100311. [Google Scholar] [CrossRef]
- Lucklum, F.; Vellekoop, M.J. Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice. Appl. Phys. Lett. 2018, 113, 201902. [Google Scholar] [CrossRef]
Material | (kg/m3) | (Pa) | |
---|---|---|---|
Resin | 1180 | 4.52 × 109 | 1.59 × 109 |
Rubber | 1300 | 6.051 × 105 | 4 × 104 |
Tungsten | 19,350 | 3.06 × 1011 | 1.311 × 1011 |
Belt Position | Starting and Ending Frequency (Hz) | Band Gap Direction |
---|---|---|
1–2 | 34.05–48.77 | XM-direction |
3–4 | 49.13–56.09 | XM-direction |
4–5 | 56.16–94.45 | XM-direction |
6–7 | 98.57–208.93 | Full band gap |
6–7 | 208.93–953.38 | XM-direction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Wang, Z.; Zhang, Y.; Li, L.; Chen, C. Analysis of Influence of Excitation Source Direction on Sound Transmission Loss Simulation Based on Alloy Steel Phononic Crystal. Processes 2024, 12, 2446. https://doi.org/10.3390/pr12112446
Guo Z, Wang Z, Zhang Y, Li L, Chen C. Analysis of Influence of Excitation Source Direction on Sound Transmission Loss Simulation Based on Alloy Steel Phononic Crystal. Processes. 2024; 12(11):2446. https://doi.org/10.3390/pr12112446
Chicago/Turabian StyleGuo, Zhaofeng, Ziming Wang, Yanchao Zhang, Lei Li, and Chuanmin Chen. 2024. "Analysis of Influence of Excitation Source Direction on Sound Transmission Loss Simulation Based on Alloy Steel Phononic Crystal" Processes 12, no. 11: 2446. https://doi.org/10.3390/pr12112446
APA StyleGuo, Z., Wang, Z., Zhang, Y., Li, L., & Chen, C. (2024). Analysis of Influence of Excitation Source Direction on Sound Transmission Loss Simulation Based on Alloy Steel Phononic Crystal. Processes, 12(11), 2446. https://doi.org/10.3390/pr12112446