Inertinite Reflectance in Relation to Combustion Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Results Disregarding Combustion Duration
3.2. Results Under a Combustion Duration of 1 h
3.3. Results Under a Combustion Duration Longer Than 5 h (Including 5 h)
4. Conclusions
- (1)
- The relationship between inertinite reflectance and combustion temperature disregarding combustion duration is . Under a combustion duration of 1 h, the equation is , and under a combustion duration longer than 5 h (including 5 h), it is .
- (2)
- Error analysis results show that the fitted equation expressing the relationship between inertinite reflectance and combustion temperature has a significantly lower error than the empirical formula under any combustion duration condition. The error of the fitted equation under a combustion duration of 1 h was greater than that under a combustion duration longer than 5 h (including 5 h), and the correlation coefficient (R2) between inertinite reflectance and combustion duration was also smaller, indicating that reflectance tends to stabilize as the combustion duration extends.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.H. Climate change is an environmental problem as well as an economic one. In WTO Economic Guide; Beijing, China, 2018. [Google Scholar]
- Berner, R.A. Phanerozoic atmospheric oxygen: New results using the geocarbsulf model. Am. J. Sci. 2009, 309, 603–606. [Google Scholar] [CrossRef]
- Lynch, A.H.; Beringer, J.; Kershaw, P.; Marshall, A.; Mooney, S.; Tapper, N.; Turney, C.; Van Der Kaars, S. Using the paleorecord to evaluate climate and fire interactions in australia. Annu. Rev. Earth Planet. Sci. 2007, 35, 215–239. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Giglio, L.; Kasibhatla, P.S.; Arellano Jr, A.F.; Olsen, S.C.; Kasischke, E.S. Continental-scale partitioning of fireemissions during the 1997 to 2001 El Niño/La Niña Period. Science 2004, 303, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.M.; Bradstock, R.A. Extinctions of biota by fires. In ConservingBiodiversity: Threats and Solutions; Bradstock, R.A., Auld, T.D., Keith, D.A., Kingsford, R., Lunney, D., Sivertsen, D., Eds.; Surrey Beatty and Sons: Sydney, Australia, 1995; pp. 309–322. [Google Scholar]
- Lehmann, C.E.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Felfili, J.; et al. Savanna vegetation-fire-climate relationships differ among continents. Science 2014, 343, 548–552. [Google Scholar] [CrossRef]
- Lenton, T.M. Early warning of climate tipping points. Nat. Clim. Chang. 2011, 1, 201–209. [Google Scholar] [CrossRef]
- Kelly, R.F.; Higuera, P.E.; Barrett, C.M.; Hu, F.S. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quat. Res. Interdiscip. J. 2011, 75, 11–17. [Google Scholar] [CrossRef]
- Keeley, J.E.; Rundel, P.W. Fire and the miocene expansion of C4 grasslands. Ecol. Lett. 2005, 8, 683–690. [Google Scholar] [CrossRef]
- Simon, M.F.; Grether, R.; de Queiroz, L.P.; Skema, C.; Pennington, R.T.; Hughes, C.E. Recent assembly of the cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Nat. Acad. Sci. USA 2009, 106, 20359–20364. [Google Scholar] [CrossRef]
- Belcher, C.M.; Hudspith, V.A. Changes to cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytol. 2017, 213, 1521–1532. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, X.; Pan, J.; Deng, Z. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy 2023, 275, 127377. [Google Scholar] [CrossRef]
- Zhan, C.L.; Cao, J.J.; Han, Y.M.; An, Z.S. Research Progress on Reconstruction of Paleofire History. Adv. Earth Sci. 2011, 26, 1248–1259. [Google Scholar] [CrossRef]
- Scott, A.C.; Glasspool, I.J. Observations and experiments on the origin and formation of inertinite group macerals. Int. J. Coal Geol. 2007, 70, 53–66. [Google Scholar] [CrossRef]
- Scott, A.C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 11–39. [Google Scholar] [CrossRef]
- Guo, X.; Yao, J.G.; Li, H.D.; Tian, Z.; Wang, Z.; Shi, Z.; Zhao, C.; Liu, B.; Sun, Y. FTIR characteristics of charcoal with different combustion degrees as an indication of the genesis by and their significances for formation of fusinite in coal. Coal Sci. Technol. 2023, 51, 292–301. [Google Scholar] [CrossRef]
- Li, H.D. Implications of Modern Wildfire Residue on the Origin of Fusinite in Coal. Master’s Thesis, Hebei University of Engineering, Handan, China, 2022. [Google Scholar]
- Hower, J.C.; O’Keefe, J.M.; Eble, C.F. Errata: “notes on the origin of inertinite macerals in coals: Funginite associations with cutinite and suberinite” and “notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals”. Int. J. Coal Geol. 2013, 116–117, 182. [Google Scholar] [CrossRef]
- Belcher, C.M.; Collinson, M.E.; Scott, A.C. A 450-Million-Year History of Fire; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 229–249. [Google Scholar]
- Scott, A.C. The pre-quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 164, 281–329. [Google Scholar] [CrossRef]
- Scott, A.C.; Glasspool, I.J. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Mater. Sci. Forum 2015, 33, 865–868. [Google Scholar] [CrossRef]
- Scott, A.C.; Jones, T.P. The nature and influence of fire in Carboniferous ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 106, 91–112. [Google Scholar] [CrossRef]
- Scott, A.C. Observations on the nature and origin of fusain. Int. J. Coal Geol. 1989, 12, 443–475. [Google Scholar] [CrossRef]
- Antal, M.J.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Mcparland, L.C.; Collinson, M.E.; Scott, A.C.; Steart, D.C.; Grassineau, N.V.; Gibbons, S.J. Ferns and fires: Experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry. Palaios 2007, 22, 528–538. [Google Scholar]
- Hammes, K.; Smernik, R.J.; Skjemstad, J.O.; Herzog, A.; Schmidt, M.W.I. Synthesis and characterisation of laboratory-charred grass straw (oryza sativa) and chestnut wood (castanea sativa) as reference materials for pyom quantification. Org. Geochem. 2006, 37, 1629–1633. [Google Scholar] [CrossRef]
- Jones, T.P.; Scott, A.C.; Cope, M. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. Bull. Soc. Geol. Fr. 1991, 162, 193–200. [Google Scholar]
- Jones, T.P. Fusain in Late Jurassic Sediments from the Witch Ground Graben, North Sea, UK; Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO-National Geological Survey: Haarlem, The Netherlands, 1997. [Google Scholar]
- Hudspith, V.A.; Belcher, C.M.; Yearsley, J.M. Charring temperatures are driven by the fuel types burned in a peatland wildfire. Front. Plant Sci. 2014, 5, 714. [Google Scholar] [CrossRef]
- Petersen, H.I.; Lindström, S. Synchronous Wildfire Activity Rise and Mire Deforestation at the Triassic–Jurassic Boundary. PLoS ONE 2012, 7, e47236. [Google Scholar] [CrossRef]
- Cuña Suárez, A.; Tancredi, N.; Pinheiro, P.C.C.; Yoshida, M.I. Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. J. Therm. Anal. Calorim. 2010, 100, 1051–1054. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Francioso, O.; Di Foggia, M.; Bonora, S.; Rumpel, C.; Certini, G. Application of thermal and spectroscopic techniques to assess fire-induced changes to soil organic matter in a Mediterranean forest. J. Geochem. Explor. 2014, 143, 174–182. [Google Scholar] [CrossRef]
- Merino, A.; Fonturbel, M.T.; Fernandez, C.; Chavez-Vergara, B.; Garcia-Oliva, F.; Vega, J.A. Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate. Sci. Total Environ. 2018, 627, 622–632. [Google Scholar] [CrossRef]
- Minatre, K.L.; Arienzo, M.M.; Moosmüller, H.; Maezumi, S.Y. Charcoal analysis for temperature reconstruction with infrared spectroscopy. Front. Earth Sci. 2024, 12, 1354080. [Google Scholar] [CrossRef]
- Mcparland, L.C.; Collinson, M.E.; Scott, A.C.; Campbell, G. The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeol. Anthropol. Sci. 2009, 1, 249–261. [Google Scholar] [CrossRef]
- Braadbaart, F. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. J. Archaeol. Sci. 2008, 35, 2434–2445. [Google Scholar] [CrossRef]
- Li, G.; Gao, L.; Liu, F.; Qiu, M.; Dong, G. Quantitative studies on charcoalification: Physical and chemical changes of charring wood. Fundam. Res. 2024, 4, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Braadbaart, F.; Wright, P.J.; Van der Horst, J.; Boon, J.J. A laboratory simulation of the carbonization of sunflower achenes and seeds. J. Anal. Appl. Pyrolysis 2007, 78, 316–327. [Google Scholar] [CrossRef]
Jones T. P. et al., 1991 [27] | Mcparland L. C. et al., 2009 [35] | Braadbaart F. et al., 2008 [36] | Li Gang et al., 2022 [37] | ||||||||||||||||||||
Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C |
0.49 | 340 | 1.5 | 0.95 | 300 | 1 | 0.13 | 300 | 1 | 0.46 | 300 | 10 | 0.40 | 310 | 1 | 0.65 | 400 | 1 | 0.17 | 250 | 2 | 1.02 | 400 | 1 |
1.39 | 440 | 1.5 | 1.13 | 340 | 1 | 0.80 | 400 | 1 | 1.46 | 400 | 24 | 0.65 | 340 | 1 | 1.20 | 440 | 1 | 0.51 | 300 | 2 | 1.26 | 450 | 1 |
3.7 | 560 | 1.5 | 1.33 | 370 | 1 | 1.58 | 500 | 1 | 2.60 | 500 | 24 | 0.87 | 370 | 1 | 1.88 | 500 | 1 | 0.90 | 350 | 2 | 1.60 | 500 | 1 |
4.5 | 640 | 1.5 | 1.83 | 400 | 1 | 2.34 | 600 | 1 | 3.55 | 600 | 24 | 1.30 | 400 | 1 | 3.17 | 600 | 1 | 1.07 | 400 | 2 | 1.73 | 550 | 1 |
5.4 | 840 | 1.5 | 2.2 | 500 | 1 | 3.81 | 700 | 1 | 4.36 | 700 | 24 | 1.83 | 440 | 1 | 4.80 | 700 | 1 | 1.15 | 450 | 2 | 2.01 | 600 | 1 |
5.6 | 920 | 1.5 | 2.5 | 560 | 1 | 5.05 | 800 | 1 | 5.05 | 800 | 24 | 2.50 | 500 | 1 | 5.89 | 900 | 1 | 1.43 | 500 | 2 | 2.16 | 650 | 1 |
6 | 1060 | 1.5 | 2.6 | 600 | 1 | 6.02 | 900 | 1 | / | / | / | 3.70 | 600 | 1 | 1.70 | 440 | 1 | 1.58 | 550 | 2 | / | / | / |
0.55 | 300 | 1 | 0.13 | 220 | 1 | 6.26 | 1000 | 1 | / | / | / | 4.09 | 650 | 1 | 2.21 | 500 | 1 | 0.20 | 250 | 4 | / | / | / |
1.11 | 340 | 1 | 0.47 | 220 | 1 | 6.72 | 1100 | 1 | / | / | / | 4.96 | 700 | 1 | 1.43 | 440 | 1 | 0.66 | 300 | 4 | / | / | / |
1.39 | 500 | 1 | 0.63 | 250 | 1 | 0.25 | 300 | 5 | / | / | / | 6.19 | 900 | 1 | 3.26 | 600 | 1 | 0.98 | 350 | 4 | / | / | / |
4.3 | 600 | 1 | 0.58 | 250 | 1 | 2.16 | 500 | 5 | / | / | / | 6.24 | 1000 | 1 | 5.96 | 900 | 1 | 1.12 | 400 | 4 | / | / | / |
4.6 | 700 | 1 | / | / | / | 6.84 | 1100 | 5 | / | / | / | 6.36 | 1100 | 1 | 5.69 | 800 | 1 | 0.11 | 250 | 1 | / | / | / |
5.2 | 820 | 1 | / | / | / | 5.05 | 800 | 5 | / | / | / | 0.20 | 310 | 1 | 6.24 | 900 | 1 | 0.33 | 300 | 1 | / | / | / |
0.6 | 270 | 1 | / | / | / | 7.22 | 1100 | 10 | / | / | / | 0.49 | 370 | 1 | 6.29 | 1000 | 1 | 0.52 | 350 | 1 | / | / | / |
Scott A. C. et al., 2007 [14] | Scott A. C. et al., 2015 [21] | Mcparland L. C. et al., 2007 [25] | Scott A. C., 2010 [15] | Hudspith V. A. et al., 2014 [29] | Braadbaart, F. 2007 [38] | ||||||||||||||||||
Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | Ro% | T (°C) | C | |||
0.10 | 280 | 1 | 3.90 | 600 | 1 | 0.25 | 250 | 24 | 0.23 | 300 | 1 | 0.4 | 275 | 24 | 0.65 | 400 | 24 | 0.46 | 310 | 1 | |||
0.27 | 300 | 1 | 0 | 300 | 1 | 1.81 | 400 | 24 | 0.50 | 350 | 1 | 0.43 | 300 | 24 | 1.65 | 500 | 24 | 1.64 | 440 | 1 | |||
0.55 | 325 | 1 | 0.47 | 350 | 1 | 2.43 | 450 | 24 | 1.03 | 400 | 1 | 1.57 | 400 | 24 | 2.45 | 600 | 24 | 3.58 | 600 | 1 | |||
1.00 | 350 | 1 | 0.86 | 400 | 1 | 3.68 | 525 | 24 | 1.14 | 450 | 1 | 3.33 | 500 | 24 | 4.47 | 700 | 24 | / | / | / | |||
1.24 | 400 | 1 | 1.47 | 450 | 1 | 0.42 | 300 | 24 | 1.62 | 500 | 1 | 4.97 | 600 | 24 | 4.73 | 800 | 24 | / | / | / | |||
1.47 | 450 | 1 | 1.99 | 500 | 1 | 1.51 | 400 | 24 | 2.19 | 600 | 1 | 6.86 | 900 | 24 | / | / | / | / | / | / | |||
2.29 | 500 | 1 | 2.34 | 550 | 1 | 3.17 | 500 | 24 | / | / | / | / | / | / | / | / | / | / | / | / | |||
2.81 | 550 | 1 | 2.59 | 600 | 1 | 4.73 | 600 | 24 | / | / | / | / | / | / | / | / | / | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Chen, D.; Cui, C.; Fu, X.; Yang, J.; Zhao, S.; Wang, Z. Inertinite Reflectance in Relation to Combustion Temperature. Processes 2024, 12, 2452. https://doi.org/10.3390/pr12112452
Gao D, Chen D, Cui C, Fu X, Yang J, Zhao S, Wang Z. Inertinite Reflectance in Relation to Combustion Temperature. Processes. 2024; 12(11):2452. https://doi.org/10.3390/pr12112452
Chicago/Turabian StyleGao, Di, Di Chen, Chi Cui, Xuebo Fu, Junjiao Yang, Shilong Zhao, and Zhenzhi Wang. 2024. "Inertinite Reflectance in Relation to Combustion Temperature" Processes 12, no. 11: 2452. https://doi.org/10.3390/pr12112452
APA StyleGao, D., Chen, D., Cui, C., Fu, X., Yang, J., Zhao, S., & Wang, Z. (2024). Inertinite Reflectance in Relation to Combustion Temperature. Processes, 12(11), 2452. https://doi.org/10.3390/pr12112452