The Pyrolysis Characteristics of Bagasse Were Studied by TG-MS-FTIR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Methods
2.3. Kinetic Model
3. Results and Analyses
3.1. TG and DTG Curve Analysis
3.1.1. TG and DTG Analysis of SB Under Different Gas Atmospheres
3.1.2. TG and DTG Analysis of SB at Different Heating Rates
3.1.3. Chemical Reaction Kinetic Parameters
3.1.4. TG-FTIR Analysis
3.1.5. Compositional Analysis of SB in Nitrogen
3.1.6. Compositional Analysis of SB in Nitrogen and Air Atmospheres
3.1.7. MS Analysis of SB Analyzed by Volatilization During Pyrolysis Under Nitrogen Atmosphere
4. Conclusions
- The main heat loss regions of air and nitrogen do not coincide with faster and higher conversion of cellulose and lignin under air atmosphere conditions. Calculations of the activation energy verified that high cellulose pyrolysis requires fewer energy barriers to overcome than hemicellulose and lignin pyrolysis.
- The types and quantities of pyrolysis products in nitrogen atmosphere are higher than those in air atmosphere. Under air atmosphere, more types of pyrolysis were generated at a low heating rate than at a high heating rate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mushtaq, F.; Mat, R.; Ani, F.N. A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew. Sustain. Energy Rev. 2014, 39, 555–574. [Google Scholar] [CrossRef]
- Abnisa, F.; Daud, W.M.A.W. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 2014, 87, 71–85. [Google Scholar] [CrossRef]
- Stöcker, M. Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials. Angew. Chem. Int. Ed. 2008, 47, 9200–9211. [Google Scholar] [CrossRef]
- Chan, Y.H.; Cheah, K.W.; How, B.S.; Loy, A.C.M.; Shahbaz, M.; Singh, H.K.G.; Yusuf, N.R.; Shuhaili, A.F.A.; Yusup, S.; Ghani, W.A.W.A.K.; et al. An overview of biomass thermochemical conversion technologies in Malaysia. Sci. Total Environ. 2019, 680, 105–123. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, A.; Zhao, Z.; He, F.; Li, H.; Liu, W. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose. Bioresour. Technol. 2015, 182, 364–367. [Google Scholar] [CrossRef]
- Marchese, L.; Kühl, K.I.P.; da Silva, J.C.G.; Mumbach, G.D.; Alves, R.F.; Alves, J.L.F.; Di Domenico, M. Exploring bioenergy prospects from malt bagasse: Insights through pyrolysis with multi-component kinetic analysis and thermodynamic parameter estimation. Renew. Energy 2024, 226, 120453. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Qi, G. TG-GC-MS study of pyrolysis characteristics and kinetic analysis during different kinds of biomass. Int. J. Hydrogen Energy 2023, 48, 11171–11179. [Google Scholar] [CrossRef]
- Ma, N.; Cao, Y.; Sun, J. Pyrolysis characteristics and product analysis of bagasse. Energy Environ. Prot. 2021, 35, 7–11. [Google Scholar]
- Bustan, M.D.; Haryati, S.; Hadiah, F.; Selpiana, S.; Huda, A. Syngas Production Improvement of Sugarcane Bagasse Conversion Using an Electromagnetic Modified Vacuum Pyrolysis Reactor. Processes 2020, 8, 252. [Google Scholar] [CrossRef]
- Parihar, A.; Bhattacharya, S. Cellulose fast pyrolysis for platform chemicals: Assessment of potential targets and suitable reactor technology. Biofuels Bioprod. Biorefining 2020, 14, 446–468. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, L.; Peng, H.; Tang, F.; Yao, K. Thermo Gravimetric Analysis and Kinetics of Biomass Briquette Fuels. Adv. New Renew. Energy 2015, 3, 81–87. [Google Scholar]
- Liu, Q.; Wen, Y.; Zhong, M.; Hu, H.; Jin, L. Insight into pyrolysis behaviors of cedar under different atmospheres via a fixed-bed reactor. Fuel 2024, 368, 131607. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, R.; Wang, D.; He, G.; Shao, S.; Zhang, J.; Zhong, Z. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour. Technol. 2011, 102, 4258–4264. [Google Scholar] [CrossRef]
- Radmanesh, R.; Courbariaux, Y.; Chaouki, J.; Guy, C. A unified lumped approach in kinetic modeling of biomass pyrolysis. Fuel 2006, 85, 1211–1220. [Google Scholar] [CrossRef]
- Liu, G.; Wright, M.M.; Zhao, Q.; Brown, R.C.; Wang, K.; Xue, Y. Catalytic pyrolysis of amino acids: Comparison of aliphatic amino acid and cyclic amino acid. Energy Convers. Manag. 2016, 112, 220–225. [Google Scholar] [CrossRef]
- Cai, J.M.; Liu, R. Numerical analysis of new distributed activation energy model for the representation of biomass pyrolysis kinetics. J. Energy Inst. 2008, 81, 149–152. [Google Scholar] [CrossRef]
- Guo, X.B.; Liu, C.X. Thermogravimetric analysis on two Bambusa texlitis wastes slow pyrolysis behaviors and kinetics using isoconversional and parallel-reactions models. Thermochim. Acta 2024, 738, 179802. [Google Scholar] [CrossRef]
- Zhu, L.; Zhong, Z. Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics. Korean J. Chem. Eng. 2020, 37, 1660–1668. [Google Scholar] [CrossRef]
- Zhai, M.; Guo, L.; Zhang, Y.; Dong, P.; Qi, G.; Huang, Y. Kinetic Parameters of Biomass Pyrolysis by TGA. Bioresources 2016, 11, 8548–8557. [Google Scholar] [CrossRef]
- Leng, E.; Gong, X.; Zhang, Y.; Xu, M. Progress of cellulose pyrolysis mechanism: Cellulose evolution based on intermediate cellulose. CIESC J. 2018, 69, 239–248. [Google Scholar]
- Mishra, R.K.; Mohanty, K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresour. Technol. 2020, 311, 123480. [Google Scholar] [CrossRef]
- Ebrahimi-Kahrizsangi, R.; Abbasi, M.H. Evaluation of reliability of Coats-Reffern method for kinetic analysis of non-isothermal TGA. Trans. Nonferrous Met. Soc. China 2008, 18, 217–221. [Google Scholar] [CrossRef]
- Qin, Y.; Ling, Q.; He, W.; Hu, J.; Li, X. Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions: A Kinetic Study. Materials 2022, 15, 987. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Zheng, Y.; Luo, Z.; Cen, K. Mechanism study of wood lignin pyrolysis by using TGA-TIR analysis. J. Anal. Appl. Pyrolysis. 2008, 82, 170–177. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; An, S. Study on the gas evolution and char structural change during pyrolysis of cotton stalk. J. Anal. Appl. Pyrolysis 2012, 97, 130–136. [Google Scholar] [CrossRef]
- Granada, E.; Eguía, P.; Vilan, J.A.; Comesaña, J.A.; Comesaña, R. FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process. Renew. Energy 2012, 41, 416–421. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, M.; Nzioka, A.; Kim, Y.; Tahir, I.; Yan, C. Kinetic Characteristics in Pyrolysis of RPF with Additives. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 1144–1148. [Google Scholar] [CrossRef]
Sample | Proximate Analysis/Mass% (ad) | Ultimate Analysis/Mass%(ad) | Qnet, ar/ MJ·kg−1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
A | V | FC | M | C | H | O | N | S | ||
SB | 2.41 | 76.91 | 11.74 | 8.94 | 41.22 | 6.03 | 41.06 | 0.35 | 0.02 | 16.14 |
Biomass | Heating Rate β (°C·min−1) | Reaction Atmosphere | Temperature Rang T (°C) | Apparent Activation Energy E (KJ·mol−1) | Pre-Exponential Factor A (s−1) | Correlation Coefficient (R) |
---|---|---|---|---|---|---|
Bagasse | 10 | N2 | 240–380 | 117.70 | 5.28 × 108 | −0.99772 |
380–470 | 140.62 | 7.35 × 1010 | −0.99801 | |||
Air | 240–340 | 164.50 | 7.76 × 1018 | −0.99861 | ||
340–400 | 83.93 | 1.64 × 107 | −0.94465 | |||
400–470 | 93.89 | 2.76 × 107 | −0.93153 | |||
20 | Air | 220–340 | 152.21 | 5.46 × 1017 | −0.99458 | |
340–425 | 77.01 | 4.06 × 106 | −0.97235 | |||
425–490 | 125.25 | 3.28 × 108 | −0.95268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Gao, Y.; Tong, H.; Dong, Y.; Qi, G.; Wang, P. The Pyrolysis Characteristics of Bagasse Were Studied by TG-MS-FTIR. Processes 2024, 12, 2494. https://doi.org/10.3390/pr12112494
Zhang S, Gao Y, Tong H, Dong Y, Qi G, Wang P. The Pyrolysis Characteristics of Bagasse Were Studied by TG-MS-FTIR. Processes. 2024; 12(11):2494. https://doi.org/10.3390/pr12112494
Chicago/Turabian StyleZhang, Songsong, Yue Gao, Haichuan Tong, Yong Dong, Guoli Qi, and Peng Wang. 2024. "The Pyrolysis Characteristics of Bagasse Were Studied by TG-MS-FTIR" Processes 12, no. 11: 2494. https://doi.org/10.3390/pr12112494
APA StyleZhang, S., Gao, Y., Tong, H., Dong, Y., Qi, G., & Wang, P. (2024). The Pyrolysis Characteristics of Bagasse Were Studied by TG-MS-FTIR. Processes, 12(11), 2494. https://doi.org/10.3390/pr12112494