Real-Time Estimation of CO2 Absorption Capacity Using Ionic Conductivity of Protonated Di-Methyl-Ethanolamine (DMEA) and Electrical Conductivity in Low-Concentration DMEA Aqueous Solutions
Abstract
:1. Introduction
2. CO2 Absorption Mechanism Using DMEA Aqueous Solutions
3. Experimental Methodology and Calculations
3.1. Experimental Setup for CO2 Absorption
3.2. Calculation of Electrical Conductivity (EC) of the CO2-Absorbed DMEA Solutions
3.3. Calculation of Ionic Conductivity of DMEAH+
4. Results and Discussion
4.1. CO2 Absorption Performance of 0.1–0.5 M DMEA Aqueous Solutions
4.2. Ionic Conductivity of Protonated DMEA (DMEAH+)
4.3. ECC and ECM Variation According to CO2 Absorption in 0.1–0.5 M DMEA Solutions
4.4. Correlation Between CO2 Absorption Capacity and Electrical Conductivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Carbon Budget. Global Carbon Budget 2023; Copernicus Publications: Göttingen, Germany, 2023. [Google Scholar]
- Hockstad, L.; Hanel, L. Inventory of US Greenhouse Gas Emissions and Sinks. 2018, Environmental System Science Data Infrastructure for a Virtual Ecosystem. Available online: https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1464240 (accessed on 1 November 2018).
- ‘The Era of Global Boiling Has Arrived,’ Says UN Boss, as White House Announces Provisions to Protect Workers from Extreme Heat. Available online: https://cnb.cx/44J1a8k (accessed on 2 September 2024).
- Patel, S.K.S.; Jeon, M.S.; Gupta, R.K.; Jeon, Y.; Kalia, V.C.; Kim, S.C.; Cho, B.K.; Kim, D.R.; Lee, J.-K. Hierarchical macroporous particles for efficient whole-cell immobilization: Application in bioconversion of greenhouse gases to methanol. ACS Appl. Mater. Interfaces 2019, 11, 18968–18977. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Angelidaki, I.; Zhang, Y. In situ biogas upgrading by CO2-to-CH4 bioconversion. Trends Biotechnol. 2021, 39, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liu, Q.; Qi, Y.; Chen, G.; Song, Y.; Kansha, Y.; Kitamura, Y. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review. Int. J. Greenh. Gas Control. 2019, 88, 109–117. [Google Scholar] [CrossRef]
- de Maria, P.D.; Kara, S.; Gallou, F. Biocatalysis in water or in non-conventional media? Adding the CO2 production for the debate. Molecules 2023, 28, 6452. [Google Scholar] [CrossRef] [PubMed]
- Santamaría, L.; Korili, S.A.; Gil, A. Layered double hydroxides for CO2 adsorption at moderate temperatures: Synthesis and amelioration strategies. Chem. Eng. J. 2023, 455, 140551. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, X.; Rao, Y.; Huang, Y. Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chin. Chem. Lett. 2024, 35, 108954. [Google Scholar] [CrossRef]
- Moon, H.-S.; Moon, J.-H.; Chun, D.H.; Park, Y.C.; Yun, Y.N.; Sohail, M.; Baek, K.; Kim, H. Synthesis of [Mg2(DOBDC)(DMF)2]@ polystyrene composite and its carbon dioxide adsorption. Microporous Mesoporous Mater. 2016, 232, 161–166. [Google Scholar] [CrossRef]
- Chouikhi, N.; Cecilia, J.A.; Vilarrasa-Garcia, E.; Besghaier, S.; Chlendi, M.; Duro, F.I.F.; Castellon, E.R.; Bagane, M. CO2 adsorption of materials synthesized from clay minerals: A review. Minerals 2019, 9, 514. [Google Scholar] [CrossRef]
- Miricioiu, M.G.; Zaharioiu, A.; Oancea, S.; Bucura, F.; Raboaca, M.S.; Filote, C.; Ionete, R.E.; Niculescu, V.C.; Constantinescu, M. Sewage sludge derived materials for CO2 adsorption. Appl. Sci. 2021, 11, 7139. [Google Scholar] [CrossRef]
- Guo, R.-T.; Li, G.-Y.; Liu, Y.; Pan, W.-G. Recent Progress on CO2 Capture Based on Sterically Hindered Amines: A Review. Energy Fuels 2023, 37, 15429–15452. [Google Scholar] [CrossRef]
- Tatarczuk, A.; Tańczyk, M.; Więcław-Solny, L.; Zdeb, J. Pilot plant results of amine-based carbon capture with heat integrated stripper. Appl. Energy 2024, 367, 123416. [Google Scholar] [CrossRef]
- He, W.; Zhang, S.; Zhu, C.; Fu, T.; Ma, Y. CO2 chemical absorption into AMP aqueous solution and mass transfer intensification in cascade sudden expansion microchannels. Chem. Eng. Process. 2022, 181, 109142. [Google Scholar] [CrossRef]
- Ji, C.; Yuan, S.; Huffman, M.; El-Halwagi, M.M.; Wang, Q. Post-combustion carbon capture for tank to propeller via process modeling and simulation. J. CO2 Util. 2021, 51, 101655. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Yu, Y.; Chen, J. Simulation and performance comparison for CO2 capture by aqueous solvents of n-(2-hydroxyethyl) piperazine and another five single amines. Processes 2021, 9, 2184. [Google Scholar] [CrossRef]
- Raznahan, M.M.; Riahi, S.; Mousavi, S.H. A simple, robust and efficient structural model to predict CO2 absorption for different amine solutions: Concern to design new amine compounds. J. Environ. Chem. Eng. 2020, 8, 104572. [Google Scholar] [CrossRef]
- Kayahan, E.; Caprio, U.D.; den Bogaert, A.V.; Khan, M.N.; Bulut, M.; Braeken, L.; Gerven, T.V.; Leblebici, M.E. A new look to the old solvent: Mass transfer performance and mechanism of CO2 absorption into pure monoethanolamine in a spray column. Chem. Eng. Process. Process Intensif. 2023, 184, 109285. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.; Lim, H.; Kang, J.H.; Park, H.S.; Park, J.; Song, H. Structural investigation of aqueous amine solutions for CO2 capture: CO2 loading, cyclic capacity, absorption–desorption rate, and pKa. J. Environ. Chem. Eng. 2024, 12, 112664. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Qin, Y.; An, A. Model predictive control for the process of mea absorption of CO2 based on the data identification model. Processes 2021, 9, 183. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Shen, M.-T.; Chang, H.; Ho, C.-D. Control of solvent-based post-combustion carbon capture process with optimal operation conditions. Processes 2019, 7, 366. [Google Scholar] [CrossRef]
- López, A.; La Rubia, M.; Pacheco, R.; Sánchez, S.; Navaza, J.; Gómez-Díaz, D. Carbon dioxide absorption by aqueous mixtures of diisopropanolamine and triethanolamine. Chem. Eng. Process. 2016, 110, 73–79. [Google Scholar] [CrossRef]
- BChoi, K.; Kim, S.-M.; Kim, K.-M.; Lee, U.; Choi, J.H.; Lee, J.-S.; Baek, I.H.; Nam, S.C.; Moon, J.-H. Amine blending optimization for maximizing CO2 absorption capacity in a diisopropanolamine–methyldiethanolamine–H2O system using the electrolyte UNIQUAC model. Chem. Eng. J. 2021, 419, 129517. [Google Scholar] [CrossRef]
- Akan, A.P.; Chau, J.; Gullu, G.; Sirkar, K.K. Life Cycle Assessment of Post-Combustion CO2 Capture and Recovery by Hydrophobic Polypropylene Cross-Flow Hollow Fiber Membrane Contactors with Activated Methyldiethanolamine. Atmosphere 2023, 14, 490. [Google Scholar] [CrossRef]
- Xiao, L.; Qiu, Z.; Feng, S.; Duan, X.; Zhao, Z.; Liu, Y.; Ma, L. Carbon dioxide absorption and desorption experiments based on MDEA. Chem. Eng. Process. 2024, 204, 109931. [Google Scholar] [CrossRef]
- Pinto, D.D.; Zahraee, Z.; Buvik, V.; Hartono, A.; Knuutila, H.K. Vapor liquid equilibrium measurements of two promising tertiary amines for CO2 capture. Processes 2019, 7, 951. [Google Scholar] [CrossRef]
- Shiva Nagendra, S.M.; Yasa, P.R.; Narayana, M.V.; Khadirnaikar, S.; Rani, P. Mobile monitoring of air pollution using low cost sensors to visualize spatio-temporal variation of pollutants at urban hotspots. Sustain. Cities Soc. 2019, 44, 520. [Google Scholar] [CrossRef]
- Sofia, D.; Giuliano, A.; Gioiella, F.; Barletta, D.; Poletto, M. Modeling of an air quality monitoring network with high space-time resolution. Comput. Aided Chem. Eng. 2018, 43, 193. [Google Scholar] [CrossRef]
- Alam, A.U.; Clyne, D.; Jin, H.; Hu, N.-X.; Deen, M.J. Fully integrated, simple, and low-cost electrochemical sensor array for in situ water quality monitoring. ACS Sens. 2020, 5, 412. [Google Scholar] [CrossRef]
- Lambrou, T.P.; Anastasiou, C.C.; Panayiotou, C.G.; Polycarpou, M.M. A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sens. J. 2014, 14, 2765–2772. [Google Scholar] [CrossRef]
- Fulton, S.G.; Stegen, J.C.; Kaufman, M.H.; Dowd, J.; Thompson, A. Laboratory evaluation of open source and commercial electrical conductivity sensor precision and accuracy: How do they compare? PLoS ONE 2023, 18, e0285092. [Google Scholar] [CrossRef]
- Thirstrup, C.; Deleebeeck, L. Review on electrolytic conductivity sensors. IEEE Trans. Instrum. Meas. 2021, 70, 1008222. [Google Scholar] [CrossRef]
- Liu, S.; Gao, H.; Luo, X.; Liang, Z. Kinetics and new mechanism study of CO2 absorption i nto water and tertiary amine solutions by stopped-Flow technique. AIChE J. 2019, 65, 652–661. [Google Scholar] [CrossRef]
- Xiang, J.; Wei, D.; Mao, W.; Liu, T.; Luo, Q.; Huang, Y.; Liang, Z.; Luo, X. Comprehensive kinetic study of carbon dioxide absorption in blended tertiary/secondary amine solutions: Experiments and simulations. Sep. Purif. Technol. 2024, 330, 125310. [Google Scholar] [CrossRef]
- Littel, R.J.; Bos, M.; Knoop, G.J. Dissociation constants of some alkanolamines at 293, 303, 318, and 333 K. J. Chem. Eng. Data 1990, 35, 276–277. [Google Scholar] [CrossRef]
- Kim, S.; Shi, H.; Lee, Y.Y. CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent. Int. J. Greenh. Gas Control. 2016, 45, 181–188. [Google Scholar] [CrossRef]
- Shi, H.; Huang, M.; Wu, Q.; Zheng, L.; Cui, L.; Zhang, S.; Tontiwachwuthikul, P. Study of catalytic CO2 absorption and desorption with tertiary amine DEEA and 1DMA-2p with the aid of solid acid and solid alkaline chemicals. Molecules 2019, 24, 1009. [Google Scholar] [CrossRef]
- Krebs, H.A.; Roughton, F.J.W. Carbonic anhydrase as a tool in studying the mechanism of reactions involving H2CO3, CO2 or HCO3′. Biochem. J. 1948, 43, 550. [Google Scholar] [CrossRef]
- Kladkaew, N.; Idem, R.; Tontiwachwuthikul, P.; Saiwan, C. Studies on corrosion and corrosion inhibitors for amine based solvents for CO2 absorption from power plant flue gases containing CO2, O2 and SO2. Energy Procedia 2011, 4, 1761–1768. [Google Scholar] [CrossRef]
- Han, S.J.; Wee, J.H. Comparison of CO2 absorption performance between methyl-di-ethanolamine and tri-ethanolamine solution systems and its analysis in terms of amine molecules. Greenh. Gases 2021, 11, 445–460. [Google Scholar] [CrossRef]
- Han, S.J.; Wee, J.H. CO2 absorption performance and electrical properties of 2-amino-2-methyl-1-propanol compared to monoethanolamine solutions as primary amine-based absorbents. Energy Fuels 2021, 35, 3197–3207. [Google Scholar] [CrossRef]
- Han, S.J.; Wee, J.H. Estimation of the Amount of CO2 Chemically Absorbed in Real Time by Measuring the Electrical Conductivity Variation of Monoethanol-Amine Aqueous Solutions. Energy Fuels 2023, 37, 19715–19725. [Google Scholar] [CrossRef]
- Prini, R.F.; Harvey, A.H.; Palmer, D.A. Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Hydrothermal Solutions; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Rice, E.W.; Bridgewater, L.; American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Debye, P.; Hückel, E. De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes. Phys. Z. 1923, 24, 185–206. [Google Scholar]
- Davies, C.; Malpass, V. Ion association and the viscosity of dilute electrolyte solutions. Part 1.—Aqueous inorganic salt solutions. Trans. Faraday Soc. 1964, 60, 2075–2084. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Felippe, A.C.; Bellettini, I.C.; Eising, R.; Minatti, E.; Giacomelli, F.C. Supramolecular complexes formed by the association of poly (ethyleneimine)(PEI), sodium cholate (NaC) and sodium dodecyl sulfate (SDS). J. Braz. Chem. 2011, 22, 1539–1548. [Google Scholar] [CrossRef]
- Corti, H.R.; Trevani, L.N.; Anderko, A. Transport Properties in High Temperature and Pressure Ionic Solutions, in Aqueous Systems at Elevated Temperatures and Pressures; Elsevier: Amsterdam, The Netherlands, 2004; pp. 321–375. [Google Scholar]
- Artemov, V.; Volkov, A.; Sysoev, N.; Volkov, A. On autoionization and pH of liquid water. Dokl. Phys. 2016, 61, 1–4. [Google Scholar] [CrossRef]
- de Myttenaere, A.; Golden, B.; Grand, B.L.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, H.; Liang, Z.; Liu, B.; Tontiwachwuthikul, P.; Hu, X. A comparative kinetics study of CO2 absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions. AIChE J. 2018, 64, 1350–1358. [Google Scholar] [CrossRef]
- Henni, A.; Li, J.; Tontiwachwuthikul, P. Reaction kinetics of CO2 in aqueous 1-amino-2-propanol, 3-amino-1-propanol, and dimethylmonoethanolamine solutions in the temperature range of 298–313 K using the stopped-flow technique. Ind. Eng. Chem. Res. 2008, 47, 2213–2220. [Google Scholar] [CrossRef]
- Tong, C.; Perez, C.C.; Chen, J.; Marcos, J.-C.V.; Neveux, T.; Moullec, Y.L. Measurement and calculation for CO2 solubility and kinetic rate in aqueous solutions of two tertiary amines. Energy Procedia 2013, 37, 2084–2093. [Google Scholar] [CrossRef]
- Liu, B.; Luo, X.; Liang, Z.; Olson, W.; Liu, H.; Idem, R.; Tontiwachwuthikul, P. The development of kinetics model for CO2 absorption into tertiary amines containing carbonic anhydrase. AIChE J. 2017, 63, 4933–4943. [Google Scholar] [CrossRef]
- Kaur, D.P.; Yamada, K.; Park, J.-S.; Sekhon, S.S. Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid. J. Phys. Chem. B 2009, 113, 5381–5390. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, X.; Yang, F.; Zhang, C.; Zhang, Q.; Duan, G.; Jiang, S. Research progress of the ion activity coefficient of polyelectrolytes: A review. Molecules 2023, 28, 2042. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-N.; Shin, H.K.; Hwang, S.; No, K.T. Development of an Infinite Dilution Activity Coefficient Prediction Model for Organic Solutes in Ionic Liquids with Modified Partial Equalization Orbital Electronegativity Method Derived Descriptors. ACS Omega 2021, 6, 15361–15373. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Schade, G.W.; Nielsen, C.J. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities. Environ. Sci. Technol. 2013, 47, 14306–14314. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.W.; Zhou, Q.; Tontiwachiwuthikul, P. Part 4a: Applications of knowledge-based system technology for the CO2 capture process system. Carbon Manag. 2012, 3, 69–79. [Google Scholar] [CrossRef]
Initial Amine Concentration of DMEA Solution (mol/L) | |||||
---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
Total CAC (mol CO2/L) | 0.135 | 0.238 | 0.345 | 0.448 | 0.550 |
Chemical CAC (mol CO2/L) | 0.100 | 0.200 | 0.300 | 0.400 | 0.500 |
Physical CAC (mol CO2/L) | 0.035 | 0.038 | 0.045 | 0.048 | 0.050 |
CO2 absorption time (min) | 15.0 | 23.8 | 35.0 | 44.9 | 52.8 |
Overall CO2 absorption rate (mmol CO2/(L·min)) | 9.0 | 10.0 | 9.9 | 10.0 | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.-J.; Han, J.Y.; Wee, J.-H. Real-Time Estimation of CO2 Absorption Capacity Using Ionic Conductivity of Protonated Di-Methyl-Ethanolamine (DMEA) and Electrical Conductivity in Low-Concentration DMEA Aqueous Solutions. Processes 2024, 12, 2495. https://doi.org/10.3390/pr12112495
Han S-J, Han JY, Wee J-H. Real-Time Estimation of CO2 Absorption Capacity Using Ionic Conductivity of Protonated Di-Methyl-Ethanolamine (DMEA) and Electrical Conductivity in Low-Concentration DMEA Aqueous Solutions. Processes. 2024; 12(11):2495. https://doi.org/10.3390/pr12112495
Chicago/Turabian StyleHan, Sang-Jun, Joo Young Han, and Jung-Ho Wee. 2024. "Real-Time Estimation of CO2 Absorption Capacity Using Ionic Conductivity of Protonated Di-Methyl-Ethanolamine (DMEA) and Electrical Conductivity in Low-Concentration DMEA Aqueous Solutions" Processes 12, no. 11: 2495. https://doi.org/10.3390/pr12112495
APA StyleHan, S. -J., Han, J. Y., & Wee, J. -H. (2024). Real-Time Estimation of CO2 Absorption Capacity Using Ionic Conductivity of Protonated Di-Methyl-Ethanolamine (DMEA) and Electrical Conductivity in Low-Concentration DMEA Aqueous Solutions. Processes, 12(11), 2495. https://doi.org/10.3390/pr12112495