Artificial Neural Network Modeling to Predict Electrical Conductivity and Moisture Content of Milk During Non-Thermal Pasteurization: New Application of Artificial Intelligence (AI) in Food Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk
2.2. Non-Thermal and Conventional Pasteurization
2.3. Electrical Conductivity
2.4. Moisture Content
2.5. Artificial Neural Network Modeling
3. Results and Discussion
3.1. Experimental Electrical Conductivity
3.2. Modeling Electrical Conductivity Using Artificial Neural Network
3.3. Modeling Moisture Content of Pasteurized and Raw Milk Using Artificial Neural Network
3.4. Effect of the Pasteurization Method on the Milk’s Electrical Conductivity and Moisture Content
4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loffi, C.; Cavanna, D.; Sammarco, G.; Catellani, D.; Dall’Asta, C.; Suman, M. Non-Targeted High-Resolution Mass Spectrometry Study for Evaluation of Milk Freshness. J. Dairy Sci. 2021, 104, 12286–12294. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.; Kabisch, J.; Böhnlein, C.; Franz, C.M.A.P. Microbial Quality and Safety of Milk and Milk Products in the 21st Century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.; Maburutse, B.E.; Kang, M.; Park, M.R.; Park, D.J.; Kim, Y.; Oh, S. Short Communication: Dietary Bovine Milk–Derived Exosomes Improve Bone Health in an Osteoporosis-Induced Mouse Model. J. Dairy Sci. 2020, 103, 7752–7760. [Google Scholar] [CrossRef]
- Paudyal, S.; Melendez, P.; Manriquez, D.; Velasquez-Munoz, A.; Pena, G.; Roman-Muniz, I.N.; Pinedo, P.J. Use of Milk Electrical Conductivity for the Differentiation of Mastitis Causing Pathogens in Holstein Cows. Animal 2020, 14, 588–596. [Google Scholar] [CrossRef]
- Fikry, M.; Yusof, Y.A.; Al-Awaadh, A.M.; Baroyi, S.A.H.M.; Ghazali, N.S.M.; Kadota, K.; Mustafa, S.; Abu Saad, H.; Shah, N.N.A.K.; Al-Ghamdi, S. Assessment of Physical and Sensory Attributes of Date-Based Energy Drink Treated with Ultrasonication: Modelling Changes during Storage and Predicting Shelf Life. Processes 2023, 11, 1399. [Google Scholar] [CrossRef]
- Mukhametov, A.; Chulenyov, A.; Kazak, A.; Semenycheva, I. Physicochemical and Microbiological Analysis of Goose Meat. Qual. Assur. Saf. Crops Foods 2023, 15, 49–58. [Google Scholar] [CrossRef]
- Subbiah, B.; Morison, K.R. Electrical Conductivity of Viscous Liquid Foods. J. Food Eng. 2018, 237, 177–182. [Google Scholar] [CrossRef]
- Kadem, Z.A.; Al-Hilphy, A.R.; Alasadi, M.H.; Gavahian, M. Combination of Ohmic Heating and Subcritical Water to Recover Amino Acids from Poultry Slaughterhouse Waste at a Pilot-Scale: New Valorization Technique. J. Food Sci. Technol. 2023, 60, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Khadir, M.T. Artificial Neural Networks in Food Processing; De Gruyter: Berlin, Germany, 2021; ISBN 9783110646054. [Google Scholar]
- Ram Talib, N.S.; Halmi, M.I.E.; Abd Ghani, S.S.; Zaidan, U.H.; Shukor, M.Y.A. Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM) Approach for Modelling the Optimization of Chromium (VI) Reduction by Newly Isolated Acinetobacter Radioresistens Strain NS-MIE from Agricultural Soil. Biomed. Res. Int. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Tohido, M.; Sadeghi, M.; Mousavi, S.R.; MireeiI, S.A. Artificial Neural Network Modeling of Process and Product Indices in Deep Bed Drying of Rough Rice. Turk. J. Agric. For. 2012, 36, 738–748. [Google Scholar] [CrossRef]
- Ngankham, J.S.; Ram, K.P. Neural Network Approaches for Prediction of Drying Kinetics during Drying of Sweet Potato. Agric. Eng. Int. 2011, 13, 1–7. [Google Scholar]
- Nayak, J.; Vakula, K.; Dinesh, P.; Naik, B.; Pelusi, D. Intelligent Food Processing: Journey from Artificial Neural Network to Deep Learning. Comput. Sci. Rev. 2020, 38, 100297. [Google Scholar] [CrossRef]
- Abuwatfa, W.H.; AlSawaftah, N.; Darwish, N.; Pitt, W.G.; Husseini, G.A. A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs). Membranes 2023, 13, 685. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, P.S.; Almeida, A.S.; Brites, C.M. Use of Artificial Neural Network Model for Rice Quality Prediction Based on Grain Physical Parameters. Foods 2021, 10, 3016. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs Neurons: Comparison between Random Forest and ANN for High-Resolution Prediction of Building Energy Consumption. Energy Build. 2017, 147, 77–89. [Google Scholar] [CrossRef]
- Alsaedi, A.W.M.; Al-Hilphy, A.R.; Al-Mousawi, A.J.; Gavahian, M. Artificial Intelligence-based Modeling of Novel Non-thermal Milk Pasteurization to Achieve Desirable Color and Predict Quality Parameters during Storage. J. Food Process Eng. 2024, 47, e14658. [Google Scholar] [CrossRef]
- Anker, M.; Borsum, C.; Zhang, Y.; Zhang, Y.; Krupitzer, C. Using a Machine Learning Regression Approach to Predict the Aroma Partitioning in Dairy Matrices. Processes 2024, 12, 266. [Google Scholar] [CrossRef]
- Tian, H.; Zhou, X.; Wang, H.; Xu, C.; Zhao, Z.; Xu, W.; Deng, Z. The Prediction of Clinical Mastitis in Dairy Cows Based on Milk Yield, Rumination Time, and Milk Electrical Conductivity Using Machine Learning Algorithms. Animals 2024, 14, 427. [Google Scholar] [CrossRef]
- AbouAyan, I.A.A.; Elgarhy, M.R.; Al-Otibi, F.O.; Omar, M.M.; El-Abbassy, M.Z.; Khalifa, S.A.; Helmy, Y.A.; Saber, W.I.A. Artificial Intelligence-Powered Optimization and Milk Permeate Upcycling for Innovative Sesame Milk with Enhanced Probiotic Viability and Sensory Appeal. ACS Omega 2024, 9, 25189–25202. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.-H.; Farahnaky, A. Effects of Ohmic and Microwave Cooking on Textural Softening and Physical Properties of Rice. J. Food Eng. 2019, 243, 114–124. [Google Scholar] [CrossRef]
- Dash, K.K.; Raj, G.V.S.B.; Gayary, M.A. Application of Neural Networks in Optimizing Different Food Processes Case Study. In Mathematical and Statistical Applications in Food Engineering; Sevda, S., Singh, A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; p. 434. [Google Scholar]
- Al-Hilphy, A.R.; Abdulstar, A.R.; Gavahian, M. Moderate Electric Field Pasteurization of Milk in a Continuous Flow Unit: Effects of Process Parameters, Energy Consumption, and Shelf-Life Determination. Innov. Food Sci. Emerg. Technol. 2021, 67, 102568. [Google Scholar] [CrossRef]
- Henningsson, M.; Östergren, K.; Dejmek, P. The Electrical Conductivity of Milk—The Effect of Dilution and Temperature. Int. J. Food Prop. 2005, 8, 15–22. [Google Scholar] [CrossRef]
- Vilas Boas, D.F.; Vercesi Filho, A.E.; Pereira, M.A.; Roma Junior, L.C.; El Faro, L. Association between Electrical Conductivity and Milk Production Traits in Dairy Gyr Cows. J. Appl. Anim. Res. 2017, 45, 227–233. [Google Scholar] [CrossRef]
- Hwang, J.H.; Jung, A.H.; Yu, S.S.; Park, S.H. Rapid Freshness Evaluation of Cow Milk at Different Storage Temperatures Using in Situ Electrical Conductivity Measurement. Innov. Food Sci. Emerg. Technol. 2022, 81, 103113. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Zhou, W.; Shao, L.; Wang, H.; Zhao, Y.; Zou, B.; Li, X.; Dai, R. Effects of Ohmic Heating with Different Voltages on the Quality and Microbial Diversity of Cow Milk during Thermal Treatment and Subsequent Cold Storage. Int. J. Food Microbiol. 2024, 410, 110483. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, H.; Salami, P.; Fadavi, A.; Saba, M.K. Processing Kinetics, Quality and Thermodynamic Evaluation of Mulberry Juice Concentration Process Using Ohmic Heating. Food Bioprod. Process. 2020, 123, 102–110. [Google Scholar] [CrossRef]
- Hwang, C.C.; Lin, C.M.; Kung, H.F.; Huang, Y.L.; Hwang, D.F.; Su, Y.C.; Tsai, Y.H. Effect of Salt Concentrations and Drying Methods on the Quality and Formation of Histamine in Dried Milkfish (Chanos Chanos). Food Chem. 2012, 135, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Anika, T.T.; Al Noman, Z.; Rahman, A.K.M.A.; Sultana, N.; Ashraf, M.N.; Pervin, M.; Islam, M.A.; Hossain, M.M.; Khan, M.A.H.N.A. Electrical Conductivity and Total Dissolved Solid of Raw Milk for the Detection of Bovine Subclinical Mastitis. Vet. World 2023, 16, 2521–2525. [Google Scholar] [CrossRef] [PubMed]
- Inzaghi, V.; Zucali, M.; Thompson, P.D.; Penry, J.F.; Reinemann, D.J. Changes in Electrical Conductivity, Milk Production Rate and Milk Flow Rate Prior to Clinical Mastitis Confirmation. Ital. J. Anim. Sci. 2021, 20, 1554–1561. [Google Scholar] [CrossRef]
- Ariç Sürme, S.; Sabancı, S. The Usage of Ohmic Heating in Milk Evaporation and Evaluation of Electrical Conductivity and Performance Analysis. J. Food Process Preserv. 2021, 45, e15522. [Google Scholar] [CrossRef]
- Elamshity, M.G.; Alhamdan, A.M. Non-Destructive Evaluation of the Physiochemical Properties of Milk Drink Flavored with Date Syrup Utilizing VIS-NIR Spectroscopy and ANN Analysis. Foods 2024, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-H.; Jung, Y.-M.; Kim, S.; Kim, J.-H.; Yeo, H.; Lee, D.-U. Tenderization of Beef Semitendinosus Muscle by Pulsed Electric Field Treatment with a Direct Contact Chamber and Its Impact on Proteolysis and Physicochemical Properties. Foods 2023, 12, 430. [Google Scholar] [CrossRef] [PubMed]
EFS (V/cm) | MFR (kg/s) | EC (S/m) | |
---|---|---|---|
Experimental | Predicted (ANN) | ||
25 | 0.0333 | 0.457441 | 0.461948 |
25 | 0.025 | 0.550797 | 0.550661 |
25 | 0.0167 | 0.638224 | 0.637768 |
26 | 0.0333 | 0.465563 | 0.466968 |
26 | 0.025 | 0.51969 | 0.519654 |
26 | 0.0167 | 0.628994 | 0.635771 |
27 | 0.0333 | 0.479948 | 0.480037 |
27 | 0.025 | 0.492711 | 0.492596 |
27 | 0.0167 | 0.614899 | 0.626663 |
28 | 0.0333 | 0.491014 | 0.491003 |
28 | 0.025 | 0.473658 | 0.472494 |
28 | 0.0167 | 0.604849 | 0.611522 |
29 | 0.0333 | 0.496947 | 0.496733 |
29 | 0.025 | 0.46098 | 0.461157 |
29 | 0.0167 | 0.598337 | 0.597816 |
30 | 0.0333 | 0.500368 | 0.500604 |
30 | 0.025 | 0.458289 | 0.458693 |
30 | 0.0167 | 0.587987 | 0.586851 |
31 | 0.0333 | 0.503621 | 0.503529 |
31 | 0.025 | 0.459238 | 0.458872 |
31 | 0.0167 | 0.585201 | 0.584777 |
32 | 0.0333 | 0.501187 | 0.501768 |
32 | 0.025 | 0.46421 | 0.462115 |
32 | 0.0167 | 0.587152 | 0.585988 |
33 | 0.0333 | 0.497532 | 0.49737 |
33 | 0.025 | 0.479747 | 0.474522 |
33 | 0.0167 | 0.588196 | 0.588431 |
34 | 0.0333 | 0.49191 | 0.491741 |
34 | 0.025 | 0.499972 | 0.499811 |
34 | 0.0167 | 0.593931 | 0.593675 |
35 | 0.0333 | 0.479895 | 0.479877 |
35 | 0.025 | 0.52742 | 0.527145 |
35 | 0.0167 | 0.59541 | 0.596071 |
SSE * | 0.01011 | ||
R | 0.9546 | ||
RMSE | 0.01935 |
NP * | Raw Milk | ||||
---|---|---|---|---|---|
EC (S/m) | MC (%) | EC (S/m) | MC (%) | ||
Experimental | Predicted (ANNs) | Experimental | Predicted (ANNs) | ||
0.457441 | 87.36405 | 87.38058445 | 0.469055 | 87.35254 | 87.35257 |
0.550797 | 87.37655 | 87.38484013 | 0.469035 | 87.35223 | 87.35161 |
0.638224 | 87.38905 | 87.38836818 | 0.469172 | 87.35141 | 87.35136 |
0.465563 | 87.35521 | 87.38096934 | 0.468955 | 87.33368 | 87.33983 |
0.51969 | 87.36921 | 87.38346795 | 0.469101 | 87.35001 | 87.34997 |
0.628994 | 87.38321 | 87.3880219 | 0.468855 | 87.3218 | 87.3264 |
0.479948 | 87.34838 | 87.38164526 | 0.469016 | 87.34387 | 87.34446 |
0.492711 | 87.36388 | 87.3822382 | 0.468987 | 87.34827 | 87.34011 |
0.614899 | 87.37937 | 87.38748033 | 0.469008 | 87.32943 | 87.34182 |
0.491014 | 87.34354 | 87.38215975 | 0.468912 | 87.35541 | 87.35531 |
0.473658 | 87.36054 | 87.38135066 | 0.469032 | 87.35555 | 87.35091 |
0.604849 | 87.37754 | 87.38708506 | 0.468898 | 87.34207 | 87.34651 |
0.496947 | 87.3407 | 87.38243349 | 0.468981 | 87.35032 | 87.34005 |
0.46098 | 87.3592 | 87.38075243 | 0.468996 | 87.34166 | 87.34036 |
0.598337 | 87.3777 | 87.38682502 | 0.469092 | 87.32527 | 87.32712 |
0.500368 | 87.33986 | 87.38259062 | 0.468962 | 87.33915 | 87.33997 |
0.458289 | 87.35986 | 87.38062474 | 0.468979 | 87.33819 | 87.34004 |
0.587987 | 87.37986 | 87.38640558 | 0.46913 | 87.35807 | 87.35872 |
0.503621 | 87.34102 | 87.38273956 | 0.469129 | 87.35941 | 87.35887 |
0.459238 | 87.36252 | 87.3806698 | 0.469003 | 87.35455 | 87.34095 |
0.585201 | 87.38402 | 87.38629141 | 0.468987 | 87.32812 | 87.34011 |
0.501187 | 87.34419 | 87.38262816 | 0.468865 | 87.35374 | 87.33886 |
0.46421 | 87.36719 | 87.38090538 | 0.468862 | 87.3364 | 87.3364 |
0.587152 | 87.39018 | 87.38637142 | 0.468866 | 87.33104 | 87.3395 |
0.497532 | 87.34935 | 87.38246039 | 0.468963 | 87.34581 | 87.33998 |
0.479747 | 87.37385 | 87.38163587 | 0.468979 | 87.32842 | 87.34004 |
0.588196 | 87.39835 | 87.38641412 | 0.468812 | 87.33366 | 87.33366 |
0.49191 | 87.35651 | 87.38220119 | 0.468916 | 87.33057 | 87.3306 |
0.499972 | 87.38251 | 87.38257246 | 0.469183 | 87.34883 | 87.34885 |
0.593931 | 87.40851 | 87.38664738 | 0.468972 | 87.33272 | 87.34001 |
0.479895 | 87.36567 | 87.38164279 | 0.469091 | 87.32882 | 87.32699 |
0.52742 | 87.39317 | 87.38381379 | 0.468961 | 87.35346 | 87.33996 |
0.59541 | 87.386707 | 87.38670716 | 0.468824 | 87.34658 | 87.34743 |
SSE | 0.0007977 | 0.0011 | |||
R | 0.951840323 | 0.736478106 | |||
RMSE | 0.005539 | 0.0064 |
Sample Type | EC (S/m) | MC (%) |
---|---|---|
NP * | 0.416 ± 0.003 a | 87.37 ± 2.01 a |
CP | 0.492 ± 0.001 c | 87.39 ± 5.23 a |
Raw milk | 0.469 ± 0.005 b | 87.32 ± 3.28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaedi, A.W.M.; Al-Hilphy, A.R.; Al-Mousawi, A.J.; Gavahian, M. Artificial Neural Network Modeling to Predict Electrical Conductivity and Moisture Content of Milk During Non-Thermal Pasteurization: New Application of Artificial Intelligence (AI) in Food Processing. Processes 2024, 12, 2507. https://doi.org/10.3390/pr12112507
Alsaedi AWM, Al-Hilphy AR, Al-Mousawi AJ, Gavahian M. Artificial Neural Network Modeling to Predict Electrical Conductivity and Moisture Content of Milk During Non-Thermal Pasteurization: New Application of Artificial Intelligence (AI) in Food Processing. Processes. 2024; 12(11):2507. https://doi.org/10.3390/pr12112507
Chicago/Turabian StyleAlsaedi, Ali Wali M., Asaad R. Al-Hilphy, Azhar J. Al-Mousawi, and Mohsen Gavahian. 2024. "Artificial Neural Network Modeling to Predict Electrical Conductivity and Moisture Content of Milk During Non-Thermal Pasteurization: New Application of Artificial Intelligence (AI) in Food Processing" Processes 12, no. 11: 2507. https://doi.org/10.3390/pr12112507
APA StyleAlsaedi, A. W. M., Al-Hilphy, A. R., Al-Mousawi, A. J., & Gavahian, M. (2024). Artificial Neural Network Modeling to Predict Electrical Conductivity and Moisture Content of Milk During Non-Thermal Pasteurization: New Application of Artificial Intelligence (AI) in Food Processing. Processes, 12(11), 2507. https://doi.org/10.3390/pr12112507