Effect of Microwave–Vacuum Drying and Pea Protein Fortification on Pasta Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Drying Procedure
2.3. Moisture Content and Water Activity
2.4. Microstructure
2.5. Colour
2.6. Culinary Parameters
2.7. Textural Propoerties
2.8. Statistical Analysis
3. Results
3.1. Moisture Content and Water Activity
3.2. Two-Dimensional Microstructure
3.3. Three-Dimensional Microstructure
3.4. Colour Analysis
3.5. Weight Gain Factor and Cooking Loss
3.6. Textural Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adejuwon, O.H.; Jideani, A.I.O.; Falade, K.O. Quality and public health concerns of instant noodles as influenced by raw materials and processing technology. Food Rev. Int. 2020, 36, 276–317. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. How combinations of dietary fibers can affect physicochemical characteristics of pasta. LWT—Food Sci. Technol. 2015, 61, 41–46. [Google Scholar] [CrossRef]
- Pinela, M.; Emmambuxb, N.; Bourlieua, C.; Micard, V. Nutritional contributions and processability of pasta made from climate-smart, sustainable crops: A critical review. Crit. Rev. Food Sci. Nutr. 2023, 8, 1–31. [Google Scholar] [CrossRef]
- Filip, S.; Vidrih, R. Amino acid composition of protein-enriched dried pasta: Is it suitable for a low-carbohydrate diet? Food Technol. Biotechnol. 2015, 53, 298–306. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A.; Starek, A. Possibility of using wheat germ and wheat germ protein isolate for high-protein pasta production. Cereal Chem. 2023, 100, 299–309. [Google Scholar] [CrossRef]
- Osipova, G.A.; Koryachkina, S.Y.; Koryachkin, V.P.; Seregina, T.V.; Zhugina, A.E. Effects of protein-containing additives on pasta quality and biological value. Foods Raw Mater. 2019, 7, 60–66. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, S.; Nagi, H.P.S. Enrichment of pasta with different plant proteins. J. Food Sci. Technol. 2013, 50, 1000–1005. [Google Scholar] [CrossRef]
- Romano, A.; Ferranti, P.; Gallo, V.; Masi, O. New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr. Opin. Food Sci. 2021, 41, 249–259. [Google Scholar] [CrossRef]
- Messia, M.C.; Cuomo, F.; Falasca, L.; Trivisonno, M.C.; De Arcangelis, E.; Marconi, E. Nutritional and technological quality of high protein pasta. Foods 2021, 10, 589. [Google Scholar] [CrossRef]
- Kowalczewski, P.; Lewandowicz, G.; Makowska, A.; Knoll, I.; Błaszczak, W.; Białas, W.; Kubiak, P. Pasta fortified with potato juice: Structure, quality, and consumer acceptance. J. Food Sci. 2015, 80, S1377–S1382. [Google Scholar] [CrossRef]
- Petitot, M.; Boyer, L.; Minier, C.; Micard, V. Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Res. Int. 2010, 43, 634–641. [Google Scholar] [CrossRef]
- Foschia, M.; Horstmann, S.W.; Arendt, E.K.; Zannini, E. Legumes as functional ingredients in gluten-free bakery and pasta products. Annu. Rev. Food Sci. Technol. 2017, 8, 75–96. [Google Scholar] [CrossRef] [PubMed]
- El-Sohaimy, S.A.; Brennan, M.; Darwish, A.M.G.; Brennan, C. Physicochemical, texture and sensorial evaluation of pasta enriched with chickpea flour and protein isolate. Ann. Agric. Sci. 2020, 65, 28–34. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A.; Zarzycki, P.; Latoch, A. Legume flour as a natural colouring component in pasta production. Food Sci. Technol. 2020, 57, 301–309. [Google Scholar] [CrossRef]
- Wójtowicz, A. Wpływ dodatku grochu na wybrane cechy fizyczne i kulinarne ekstrudowanych makaronów błyskawicznych. Żywność Nauka Technol. Jakość 2009, 3, 40–49. [Google Scholar]
- Kawka, A.; Kędzior, Z. Białka pochodzenia roślinnego, ich charakterystyka i znaczenie w żywności. In Białka w Żywności i Żywieniu; Gawęcki, J., Ed.; Wyd. Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu: Poznań, Poland, 2003. [Google Scholar]
- Liu, Y.; Dylan, C.; Cadwallader, D.C.; Drake, M.A. Identification of predominant aroma components of dried pea protein concentrates and isolates. Food Chem. 2023, 406, 134998. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Mościcki, L. Influence of legume type and addition level on quality characteristics, texture and microstructure of enriched precooked pasta. LWT—Food Sci. Technol. 2014, 59, 1175–1185. [Google Scholar] [CrossRef]
- Gangola, M.P.; Ramadoss, R.B.; Jaiswal, S.; Chan, C.; Mollard, R.; Fabek, H.; Tulbek, M.; Jones, P.; Sanchez-Hernandez, D.; Anderson, G.H.; et al. Faba bean meal, starch or protein fortification of durum wheat pasta differentially influence noodle composition, starch structure and in vitro digestibility. Food Chem. 2021, 349, 129167. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Des Marchai, L.-P. Evolution of porosity, shrinkage and density of pasta fortified with pea protein concentrate during drying. LWT—Food Sci. Technol. 2011, 44, 883–889. [Google Scholar] [CrossRef]
- Giannotti, V.; Mariani, M.B.; Marini, F.; Biancolillo, A. Effects of thermal treatments on durum wheat pasta flavour during production process: A modelling approach to provide added-value to pasta dried at low temperatures. Talanta 2021, 225, 121955. [Google Scholar] [CrossRef]
- Gonzalez-Cavieres, L.; Perez-Won, M.; Tabilo-Munizaga, G.; Jara-Quijada, E.; Diaz-Alvarez, R.; Lemus-Mondaca, R. Advances in vacuum microwave drying (VMD) systems for food products. Trends Food Sci. Technol. 2021, 116, 626–638. [Google Scholar] [CrossRef]
- Figiel, A.; Michalska, A. Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. Int. J. Mol. Sci. 2017, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Ressing, H.; Ressing, M.; Durance, T. Modeling the mechanisms of dough puffing during vacuum microwave drying using the finite element method. J. Food Eng. 2007, 82, 498–508. [Google Scholar] [CrossRef]
- Alibas, I. Energy consumption and colour characteristics of Nettle Leaves during microwave, vacuum and convective drying. Biosyst. Eng. 2007, 96, 495–502. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Karmakar, P.; Mandal, R. Microwave-Vacuum Dehydration in Food Processing. In Microwave Processing of Foods: Challenges, Advances and Prospects; Pratap Singh, A., Erdogdu, F., Wang, S., Ramaswamy, H.S., Eds.; Food Engineering Series; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Marzec, A.; Ambroziak, D. Wpływ rodzaju surowca i dodatku kakao na właściwości reologiczne ciasta i teksturę makaronu suszonego metodą mikrofalowo-próżniową. Przeg. Zbożowo-Młynarski 2021, 1, 52–59. [Google Scholar]
- Carvalho, G.R.; Monteiro, R.L.; Laurindo, J.B.; Augusto, E.P.D. Microwave and microwave-vacuum drying as alternatives to convective drying in barley malt processing. Innov. Food Sci. Emerg. Technol. 2021, 73, 102770. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Domian, E.; Masiarz, E.; Ciurzyńska, A.; Galus, S.; Małkiewicz, A.; Lenart, A.; Kowalska, J. Physical and Sensory Properties of Japanese Quince Chips Obtained by Osmotic Dehydration in Fruit Juice Concentrates and Hybrid Drying. Molecules 2020, 25, 5504. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of pre-treatment and drying methods on the quality of dried carrot properties as snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.W.; Xu, S.Y.; Sun, D.W. Dehydration of garlic slices by combined microwave-vacuum and air drying. Dry. Technol. 2003, 21, 1173–1184. [Google Scholar] [CrossRef]
- Scaman, C.H.; Durance, T.D.; Drummond, L.; Sun, D.-W. Chapter 23—Combined Microwave Vacuum Drying. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 427–445. [Google Scholar] [CrossRef]
- Obuchowski, W. Technologia Przemysłowej Produkcji Makaronu; Adamski, Z., Ed.; Wyd. Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu: Poznań, Poland, 1997. [Google Scholar]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Kuile, B.H.T. Low–Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Botelho, G.; Gaspar, A.; Costa, R. Storage Stability of Durum Wheat Pasta Enriched with Seaweeds Flours. Foods 2021, 10, 2450. [Google Scholar] [CrossRef] [PubMed]
- Stuknytė, M.; Cattaneo, S.; Pagani, M.A.; Marti, A.; Micard, V.; Hogenboom, J.; De Noni, I. Spaghetti from durum wheat: Effect of drying conditions on heat damage, ultrastructure and in vitro digestibility. Food Chem. 2014, 149, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Pongpichaiudom, A.; Songsermpong, S. Characterization of frying, microwave-drying, infrared-drying, and hot-air drying on protein-enriched, instant noodle microstructure, and qualities. J. Food Process Preserv. 2017, 42, e13560. [Google Scholar] [CrossRef]
- Shoeman, L.; Williams, P.; Du Plessis, A.; Manley, M. X-ray micro-computed tomography (µCT) for non-destructive characterization of food microstructure. Trends Food Sci. Technol. 2016, 47, 10–24. [Google Scholar] [CrossRef]
- Piwińska, M.; Wyrwisz, J.; Kurek, M.; Wierzbicka, A. Effect of drying methods on the physical properties of durum wheat pasta. CyTA—J. Food 2016, 14, 523–528. [Google Scholar] [CrossRef]
- Acquistucci, R. Influence of Maillard reaction on protein modification and color development in pasta. Comparison of different drying conditions. LWT—Food Sci. Technol. 2000, 33, 48–52. [Google Scholar] [CrossRef]
- Zweifel, C.; Handschin, S.; Escher, F.; Conde-Petit, B. Influence of high-temperature drying on structural and textural properties of durum wheat pasta. Cereal Chem. 2003, 80, 159–167. [Google Scholar] [CrossRef]
- Yang, T.; Wang, P.; Zhou, Q.; Zhong, Y.; Wang, X.; Cai, J.; Huang, M.; Jiang, D. Effects of different gluten proteins on starch’s structural and physicochemical properties during heating and their molecular interactions. Int. J. Mol. Sci. 2022, 23, 8523. [Google Scholar] [CrossRef]
- Filipčev, B.; Kojić, J.; Miljanić, J.; Šimurina, O.; Stupar, A.; Škrobot, D.; Travičić, V.; Pojić, M. Wild Garlic (Allium ursinum) Preparations in the design of novel functional pasta. Foods 2023, 12, 4376. [Google Scholar] [CrossRef]
- Levent, H.; Yeşil, S. The effects of drying methods on the quality of Turkish noodle with legume flours. GIDA 2019, 44, 1161–1173. [Google Scholar] [CrossRef]
- Li, Y.; Hu, A.J.; Wang, X.Y.; Zheng, J. Physicochemical and in vitro digestion of millet starch: Effect of moisture content in microwave. Int. J. Biol. Macromol. 2019, 134, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Kun, Y.; Xiaoxiu, H.; Wei, H.; Di, W.; Chuanlai, D. Kinetics of polyphenol losses during cooking of dried green tea noodles as influenced by microwave treatment of dough. LWT—Food Sci. Technol. 2023, 180, 114675. [Google Scholar] [CrossRef]
- Pongpichaiudom, A.; Songsermpong, S. Improvement of microwave-dried, protein-enriched, instant noodles by using hydrocolloids. J. Food Sci. Technol. 2018, 55, 2610–2620. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Moisture Content (g/100 g) | Water Activity | Percent Object Volume | Object Surface | Object Surface/Volume Ratio | Closed Porosity (Percent) | Open Porosity (Percent) | Structure Model Index |
---|---|---|---|---|---|---|---|---|
C | 6.35 ± 0.91 | 0.383 ± 0.002 | 96.65 ± 0.17 | 48.60 ± 1.62 | 10.78 ± 0.38 | 2.40 ± 0.38 | 0.97 ± 0.21 | −17.77 ± 0.52 |
MV | 6.55 ± 0.12 | 0.343 ± 0.003 bc | 35.88 ± 1.24 abc | 191.20 ± 11.15 | 59.00 ± 1.40 a | 0.09 ± 0.00 | 64.08 ± 1.24 abc | 0.25 ± 0.10 a |
p-value | 0.781 | 0.004 * | <0.001 * | 0.003 * | <0.001 * | 0.013 * | <0.001 * | <0.001 * |
H3 | 7.47 ± 0.82 | 0.338 ± 0.000 bcB | 33.45 ± 3.16 abc | 217.69 ± 18.13 | 72.13 ± 0.81 bc | 0.02 ± 0.01 | 66.54 ± 3.16 abc | 0.71 ± 0.24 ab |
H6 | 8.13 ± 0.55 | 0.351 ± 0.002 cB | 37.67 ± 4.69 bc | 224.88 ± 23.51 | 66.21 ± 1.32 ab | 0.07 ± 0.02 | 62.30 ± 4.70 ab | 0.37 ± 0.26 ab |
H9 | 7.79 ± 0.20 | 0.344 ± 0.003 bcB | 28.69 ± 0.15 a | 225.98 ± 3.19 | 87.27 ± 1.70 d | 0.02 ± 0.01 | 71.31 ± 0.16 c | 1.15 ± 0.05 b |
N3 | 7.06 ± 0.43 | 0.331 ± 0.007 abA | 38.80 ± 0.07 bc | 229.11 ± 27.40 | 65.41 ± 7.70 ab | 0.08 ± 0.06 | 61.17 ± 0.04 ab | 0.42 ± 0.11 a |
N6 | 6.15 ± 0.76 | 0.316 ± 0.005 aA | 37.25 ± 1.34 abc | 252.34 ± 9.80 | 75.14 ± 5.62 bcd | 0.01 ± 0.01 | 62.74 ± 1.35 abc | 0.52 ± 0.27 ab |
N9 | 7.93 ± 0.47 | 0.319 ± 0.001 aA | 35.76 ± 0.31 abc | 237.97 ± 10.39 | 73.71 ± 2.58 bc | 0.02 ± 0.00 | 64.23 ± 0.31 abc | 0.60 ± 0.06 ab |
P3 | 5.07 ± 2.30 | 0.337 ± 0.009 bcB | 31.26 ± 3.72 ab | 223.59 ± 26.41 | 79.23 ± 0.07 cd | 0.01 ± 0.00 | 68.74 ± 3.72 bc | 0.78 ± 0.01 ab |
P6 | 6.99 ± 0.09 | 0.343 ± 0.001 bcB | 40.65 ± 0.65 c | 266.00 ± 4.23 | 72.49 ± 0.01 bc | 0.03 ± 0.01 | 59.34 ± 0.65 a | 0.49 ± 0.01 ab |
P9 | 6.99 ± 0.86 | 0.332 ± 0.000 abB | 37.50 ± 0.92 abc | 244.71 ± 10.90 | 72.26 ± 1.46 a | 0.02 ± 0.01 | 62.49 ± 0.91 abc | 0.56 ± 0.04 ab |
One-way analysis of variance (ANOVA) | ||||||||
Factors | p-value | |||||||
Protein addition | 0.130 | <0.001 * | 0.008 * | 0.051 | <0.001 * | 0.054 | 0.008 * | 0.005 * |
Type of protein | 0.089 | 0.003 * | 0.207 | 0.209 | 0.615 | 0.577 | 0.208 | 0.268 |
Sample Code | Dried Pasta | Cooked Pasta | ||||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | L* | a* | b* | C* | |
C | 62.79 ± 0.94 | 1.95 ± 0.35 | 19.63 ± 0.61 | 19.72 ± 0.63 | 67.85 ± 0.52 | −0.80 ± 0.11 | 11.29 ± 0.45 | 11.32 ± 0.44 |
MV | 74.45 ± 0.87 a | 1.16 ± 0.68 a | 20.69 ± 1.95 c | 20.74 ± 1.89 c | 74.45 ± 0.73 e | −0.19 ± 0.16 a | 13.50 ± 0.36 ab | 13.50 ± 0.36 abc |
p-value | 0.001 * | 0.003 * | 0.061 | 0.071 | 0.001 * | 0.054 | 0.063 | 0.064 |
H3 | 71.49 ± 0.68 a | 2.10 ± 0.11 cde | 17.44 ± 0.76 ab | 17.56 ± 0.76 ab | 72.69 ± 0.55 bc | 1.33 ± 0.07 deB | 12.46 ± 0.12 aA | 12.53 ± 0.11 aA |
H6 | 74.87 ± 1.14 ab | 2.11 ± 0.07 cde | 19.66 ± 0.06 bc | 19.77 ± 0.06 bc | 72.29 ± 0.32 b | 1.48 ± 0.12 eB | 12.71 ± 0.31 abA | 12.80 ± 0.32 aA |
H9 | 71.74 ± 2.09 ab | 2.88 ± 0.08 f | 17.57 ± 0.25 ab | 17.80 ± 0.24 ab | 70.13 ± 0.66 a | 2.15 ± 0.10 fB | 12.89 ± 0.39 abA | 13.07 ± 0.40 abA |
N3 | 77.57 ± 0.59 b | 1.65 ± 0.05 bc | 19.93 ± 0.39 bc | 19.99 ± 0.38 bc | 73.88 ± 0.79 de | 0.71 ± 0.27 cdA | 13.49 ± 0.65 abcB | 13.51 ± 0.66 abcB |
N6 | 72.03 ± 4.32 ab | 1.28 ± 0.06 bcd | 16.14 ± 0.67 a | 16.19 ± 0.67 a | 72.03 ± 0.76 b | 1.01 ± 0.12 cdeA | 14.95 ± 0.21 cdB | 14.99 ± 0.21 cdB |
N9 | 74.16 ± 0.67 ab | 2.59 ± 0.28 ef | 21.08 ± 0.02 c | 21.23 ± 0.01 c | 72.55 ± 0.23 bc | 1.11 ± 0.10 cdeA | 14.48 ± 0.32 bcdB | 14.52 ± 0.31 bcB |
P3 | 77.04 ± 3.14 b | 1.13 ± 0.13 ab | 18.88 ± 1.66 abc | 18.91 ± 1.67 abc | 73.79 ± 0.44 de | 0.16 ± 0.11 abA | 13.13 ± 0.32 abB | 13.18 ± 0.34 abAB |
P6 | 74.03 ± 0.43 ab | 2.58 ± 0.04 ef | 19.51 ± 0.06 bc | 19.67 ± 0.07 bc | 73.33 ± 0.58 cd | 0.50 ± 0.12 bcA | 13.62 ± 0.14 abcB | 13.63 ± 0.14 abcAB |
P9 | 68.24 ± 1.06 a | 2.42 ± 0.11 def | 20.84 ± 0.90 c | 20.97 ± 0.90 a | 70.89 ± 0.71 a | 1.15 ± 0.20 deA | 15.36 ± 0.30 dB | 16.35 ± 2.13 dAB |
One-way analysis of variance (ANOVA) | ||||||||
Factors | p-value | |||||||
Protein addition | 0.039 * | <0.001 * | 0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Type of protein | 0.683 | 0.458 | 0.299 | 0.324 | 0.245 | 0.001 * | 0.007 * | 0.013 * |
Sample Code | Moisture Content (g/100 g) | Weight Gain Factor | Cooking Loss (%) | Force (g) | Adhesiveness (g·s) |
---|---|---|---|---|---|
C | 67.92 ± 0.30 | 2.8 ± 0.4 | 8.8 ± 1.5 | 16.25 ± 1.99 | −1.17 ± 0.31 |
MV | 56.97 ± 1.15 | 2.2 ± 0.2 | 7.7 ± 0.4 B | 135.35 ± 14.48 e | −8.04 ± 1.64 b |
p-value | <0.001 * | 0.016 * | 0.063 | 0.010 * | 0.002 * |
H3 | 57.78 ± 2.68 | 2.2 ± 0.3 | 6.8 ± 0.5 A | 86.43 ± 16.27 cde | −4.91 ± 0.61 ab |
H6 | 56.65 ± 2.40 | 2.1 ± 0.1 | 6.0 ± 0.8 A | 63.64 ± 9.23 abc | −2.71 ± 1.59 b |
H9 | 55.03 ± 1.62 | 2.1 ± 0.1 | 6.1 ± 0.2 A | 54.19 ± 10.90 abc | −2.26 ± 1.01 b |
N3 | 58.82 ± 2.36 | 2.3 ± 0.1 | 7.3 ± 0.2 AB | 53.99 ± 7.46 acb | −3.88 ± 0.67 b |
N6 | 54.59 ± 1.74 | 2.1 ± 0.1 | 6.8 ± 3.8 AB | 45.59 ± 11.25 abc | −4.62 ± 1.64 ab |
N9 | 61.08 ± 1.88 | 2.5 ± 0.2 | 6.7 ± 0.2 AB | 91.76 ± 14.93 de | −5.21 ± 3.09 ab |
P3 | 60.18 ± 2.48 | 2.5 ± 0.2 | 7.4 ± 0.5 B | 38.09 ± 7.30 ab | −2.82 ± 0.50 b |
P6 | 55.64 ± 0.20 | 2.2 ± 0.2 | 7.0 ± 0.1 B | 45.67 ± 7.62 abc | −3.12 ± 0.32 b |
P9 | 56.41 ± 1.81 | 2.1 ± 0.1 | 7.1 ± 1.3 B | 32.97 ± 8.53 a | −1.79 ± 0.30 b |
One-way analysis of variance (ANOVA) | |||||
Factors | p-value | ||||
Protein addition | 0.057 | 0.191 | 0.308 | 0.001 * | 0.001 * |
Type of protein | 0.399 | 0.534 | 0.011 * | 0.212 | 0.276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.P.M.; Marzec, A. Effect of Microwave–Vacuum Drying and Pea Protein Fortification on Pasta Characteristics. Processes 2024, 12, 2508. https://doi.org/10.3390/pr12112508
Nguyen NPM, Marzec A. Effect of Microwave–Vacuum Drying and Pea Protein Fortification on Pasta Characteristics. Processes. 2024; 12(11):2508. https://doi.org/10.3390/pr12112508
Chicago/Turabian StyleNguyen, Nam Phuong Michalina, and Agata Marzec. 2024. "Effect of Microwave–Vacuum Drying and Pea Protein Fortification on Pasta Characteristics" Processes 12, no. 11: 2508. https://doi.org/10.3390/pr12112508
APA StyleNguyen, N. P. M., & Marzec, A. (2024). Effect of Microwave–Vacuum Drying and Pea Protein Fortification on Pasta Characteristics. Processes, 12(11), 2508. https://doi.org/10.3390/pr12112508