Interlayer-Functionalized Graphene with Phosphorus–Silicon-Containing Elements for Improving Thermal Stability and Flame Retardance of Polyacrylonitrile
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Synthesis of Interlayer-Functionalized Graphene (fRGO)
2.3. Preparation of fRGOPAN Composite
2.4. Characterization
3. Results and Discussion
3.1. Characterization of fRGO
3.2. Thermal Stability of fRGO-1/PAN Composites
3.3. Flame-Retardant Mechanism of fRGO-1/PAN Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reich, S.; Burgard, M.; Langner, M.; Jiang, S.; Wang, X.; Agarwal, S.; Ding, B.; Yu, J.; Greiner, A. Polymer nanofibre composite nonwovens with metal-like electrical conductivity. NPJ Flex. Electron. 2018, 2, 5. [Google Scholar] [CrossRef]
- Peng, H.; Wang, D.; Fu, S. Biomimetic construction of highly durable nacre-like MoS2 bio-nanocomposite coatings on polyacrylonitrile textile for intumescent flame retardation and sustainable solar-thermal-electricity conversion. Compos. Part B Eng. 2021, 215, 108742. [Google Scholar] [CrossRef]
- Lim, S.J.; Park, Y.-K.; Kim, H.; Kwon, J.; Moon, H.M.; Lee, Y.; Watanabe, A.; Teramae, N.; Ohtani, H.; Kim, Y.-M. Selective solvent extraction and quantification of synthetic microfibers in textile laundry wastewater using pyrolysis-gas chromatography/mass spectrometry. Chem. Eng. J. 2022, 434, 134653. [Google Scholar] [CrossRef]
- Chen, Y.; Chu, F.; Zhou, Y.; Jiang, X.; Song, L.; Hu, Y.; Hu, W. Bismaleimide with high thermal stability, toughness and flame retardancy modified by synergistic hyperbranched flame retardant. Chem. Eng. J. 2024, 483, 149396. [Google Scholar] [CrossRef]
- Bevington, C.; Williams, A.J.; Guider, C.; Baker, N.C.; Meyer, B.; Babich, M.A.; Robinson, S.; Jones, A.; Phillips, K.A. Development of a Flame Retardant and an Organohalogen Flame Retardant Chemical Inventory. Sci. Data 2022, 9, 295. [Google Scholar] [CrossRef]
- Gong, H.; Patino, D.U.; Ilavsky, J.; Kuzmenko, I.; Peña-Alcántara, A.E.; Zhu, C.; Coffey, A.H.; Michalek, L.; Elabd, A.; Gao, X.; et al. Tunable 1D and 2D Polyacrylonitrile Nanosheet Superstructures. ACS Nano 2023, 17, 18392–18401. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernández-Marín, R.; Robles, E.; Labidi, J.; Yilmaz, B.A.; Nefzi, H. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohydr. Polym. 2021, 271, 118424. [Google Scholar] [CrossRef]
- Guo, Y.; Zuo, C.; Liu, Y.; Chen, X.; Ren, Y.; Liu, X. Construction of a fully bio-based intumescent flame retardant for improving the flame retardancy of polyacrylonitrile. Polym. Degrad. Stab. 2023, 214, 110385. [Google Scholar] [CrossRef]
- Wang, L.; Gao, L.; Zuo, C.; Tan, W.; Ren, Y.; Liu, X. A novel phosphorus/nitrogen-containing polyacrylonitrile fiber with excellent flame retardancy and mechanical properties. Polym. Degrad. Stab. 2024, 223, 110716. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Guo, Y.; Ren, Y.; Liu, X. Preparation of flame retardant, smoke suppression and reinforced polyacrylonitrile composite fiber by using fully biomass intumescent flame retardant system and its sustainable recycle application. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107705. [Google Scholar] [CrossRef]
- Ioni, Y.; Sapkov, I.; Kirsanova, M.; Dimiev, A.M. Flame modified graphene oxide: Structure and sorption properties. Carbon 2023, 212, 118122. [Google Scholar] [CrossRef]
- Tretsiakova-McNally, S.; Joseph, P. Thermal and Calorimetric Evaluations of Polyacrylonitrile Containing Covalently-Bound Phosphonate Groups. Polymers 2018, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Aghdam, T.; Shariatinia, Z.; Hakkarainen, M.; Haddadi-Asl, V. Nitrogen and phosphorous doped graphene quantum dots: Excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. J. Hazard. Mater. 2020, 381, 121013. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Mu, B. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review. Appl. Energy 2019, 242, 695–715. [Google Scholar] [CrossRef]
- Guo, W.; Yu, B.; Yuan, Y.; Song, L.; Hu, Y. In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites. Compos. Part B Eng. 2017, 123, 154–164. [Google Scholar] [CrossRef]
- Anderson, L.; Yu, E.; Chen, W.-T. Chemical Recycling of Mixed Plastics in Electronic Waste Using Solvent-Based Processing. Processes 2021, 10, 66. [Google Scholar] [CrossRef]
- Zhu, M.; Li, S.; Sun, Q.; Shi, B. Enhanced mechanical property, chemical resistance and abrasion durability of waterborne polyurethane based coating by incorporating highly dispersed polyacrylic acid modified graphene oxide. Prog. Org. Coat. 2022, 170, 106949. [Google Scholar] [CrossRef]
- Gao, M.; Wang, T.; Chen, X.; Zhang, X.; Yi, D.; Qian, L.; You, R. Preparation of ionic liquid multifunctional graphene oxide and its effect on decrease fire hazards of flexible polyurethane foam. J. Therm. Anal. Calorim. 2021, 147, 7289–7297. [Google Scholar] [CrossRef]
- Yuan, B.; Sun, Y.; Chen, X.; Shi, Y.; Dai, H.; He, S. Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behavior of intumescent flame retardant. Compos. Part A Appl. Sci. Manuf. 2018, 109, 345–354. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J. Effect of graphite on the flame resistance of silica fume-based geopolymeric coatings. Mater. Chem. Phys. 2020, 239, 122088. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Graphene oxide/zeolitic imidazolate frameworks-8 coating for cotton fabrics with highly flame retardant, self-cleaning and efficient oil/water separation performances. Mater. Chem. Phys. 2020, 256, 123656. [Google Scholar] [CrossRef]
- Liao, S.-H.; Liu, P.-L.; Hsiao, M.-C.; Teng, C.-C.; Wang, C.-A.; Ger, M.-D.; Chiang, C.-L. One-Step Reduction and Functionalization of Graphene Oxide with Phosphorus-Based Compound to Produce Flame-Retardant Epoxy Nanocomposite. Ind. Eng. Chem. Res. 2012, 51, 4573–4581. [Google Scholar] [CrossRef]
- Wang, N.; Liu, H.; Zhang, J.; Zhang, M.; Fang, Q.; Wang, D. Synergistic effect of graphene oxide and boron-nitrogen structure on flame retardancy of natural rubber/IFR composites. Arab. J. Chem. 2020, 13, 6274–6284. [Google Scholar] [CrossRef]
- Qu, L.; Sui, Y.; Zhang, C.; Li, P.; Dai, X.; Xu, B. Compatible cyclophosphazene-functionalized graphene hybrids to improve flame retardancy for epoxy nanocomposites. React. Funct. Polym. 2020, 155, 104697. [Google Scholar] [CrossRef]
- Tang, X.-Z.; Li, W.; Yu, Z.-Z.; Rafiee, M.A.; Rafiee, J.; Yavari, F.; Koratkar, N. Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon 2011, 49, 1258–1265. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Zheng, Y.; Guan, Y.; Yi, D. Effects of Low-Load Boron/Silicon-Based Graphene Oxide on Combustion and Thermal Degradation of Flame-Retardant Unsaturated Polyester Resin. Macromol. Mater. Eng. 2020, 305, 2000454. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, L.; Wang, Z. Iron-phosphorus-nitrogen functionalized reduced graphene oxide for epoxy resin with reduced fire hazards and improved impact toughness. Compos. Part B Eng. 2020, 199, 108283. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, S.; Ren, W.; Zheng, Z.; Chen, J.; Ma, K.; Yu, C.; Zhou, X.; Zhang, W. A Favorable Improvement in Reactivity between n-Al and Sheet-like Porous CuO as a Nanoenergetic Composite by Graphene Oxide Additives. Ind. Eng. Chem. Res. 2020, 59, 12934–12942. [Google Scholar] [CrossRef]
- Li, K.-Y.; Kuan, C.-F.; Kuan, H.-C.; Chen, C.-H.; Shen, M.-Y.; Yang, J.-M.; Chiang, C.-L. Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater. Chem. Phys. 2014, 146, 354–362. [Google Scholar] [CrossRef]
- Luo, F.; Wu, K.; Shi, J.; Du, X.; Li, X.; Yang, L.; Lu, M. Green reduction of graphene oxide by polydopamine to a construct flexible film: Superior flame retardancy and high thermal conductivity. J. Mater. Chem. A 2017, 5, 18542–18550. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, H.; Duan, H. Enhancing flame retardant property of graphene oxide via phosphorus and nitrogen co-doping. Mater. Lett. 2023, 330, 133351. [Google Scholar] [CrossRef]
- Zhu, Y.; Kong, G.; Che, C. Ultra-sensitive fan-folded thermally expandable surface reduced graphene oxide strips for fire early warning response. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131478. [Google Scholar] [CrossRef]
- Guan, F.-L.; Gui, C.-X.; Zhang, H.-B.; Jiang, Z.-G.; Jiang, Y.; Yu, Z.-Z. Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide. Compos. Part B Eng. 2016, 98, 134–140. [Google Scholar] [CrossRef]
- Lin, G.; Fu, T.; Qiu, Y.; Li, F.; Sun, W. Flame retardancy and anti-impact performance of polyurea composite coating reinforced by modified ammonium polyphosphate and two-dimensional nano-fillers. Prog. Org. Coat. 2023, 180, 107554. [Google Scholar] [CrossRef]
- An, W.; Ma, J.; Xu, Q.; Zhang, H.; Wei, L.; Yuan, L. Construction of hetero-structured fillers to significantly enhance the fire safety of bio-based nanocomposite coating. Appl. Surf. Sci. 2022, 575, 151767. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, B.; Wang, X.; Wang, G.; Ding, D. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J. Hazard. Mater. 2018, 343, 364–375. [Google Scholar] [CrossRef]
- Damian, C.M.; Necolau, M.I.; Neblea, I.; Vasile, E.; Iovu, H. Synergistic effect of graphene oxide functionalized with SiO2 nanostructures in the epoxy nanocomposites. Appl. Surf. Sci. 2020, 507, 145046. [Google Scholar] [CrossRef]
- Zhou, Y.; Chu, F.; Qiu, S.; Guo, W.; Zhang, S.; Xu, Z.; Hu, W.; Hu, Y. Construction of graphite oxide modified black phosphorus through covalent linkage: An efficient strategy for smoke toxicity and fire hazard suppression of epoxy resin. J. Hazard. Mater. 2020, 399, 123015. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, M.; Hu, Z.; Liang, L.; Shi, J.; Huang, X.; Lu, M.; Wu, K. Casein phosphopeptide-biofunctionalized graphene oxide nanoplatelets based cellulose green nanocomposites with simultaneous high thermal conductivity and excellent flame retardancy. Chem. Eng. J. 2020, 382, 122733. [Google Scholar] [CrossRef]
- Dong, S.; Xiao, G.; Chen, C.; Chen, C.; Yang, Z.; Zhong, F.; Wang, M.; Zou, R. Zn-Al layered double metal hydroxide anchored reduced graphene oxide for enhancing the fire performance of composite coatings. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127736. [Google Scholar] [CrossRef]
- Rashid, M.; Al-Zaqri, N.; Guerrero-Barajas, C.; Hussain, F.; Ibrahim, M.N.M. Waste Derived Graphene Oxide-ZnO: An Efficient Photocatalyst for Rhodamine 6G. Processes 2022, 10, 2266. [Google Scholar] [CrossRef]
- Wang, D.; Ma, J.; Liu, J.; Tian, A.; Fu, S. Intumescent flame-retardant and ultraviolet-blocking coating screen-printed on cotton fabric. Cellulose 2021, 28, 2495–2504. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, C.; Liu, J.; Kong, D.; Sun, L.; Lu, Z. Preparation of a synergistic reactive flame retardant based on silicon, phosphorus and nitrogen and its application to cotton fabrics. Cellulose 2020, 27, 1799–1815. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, T.; Li, J.; Tan, J.; Zhu, X. Synthesis of a Multifunctional Phosphorus/Silicon Flame Retardant via an Industrial Feasible Technology. ACS Sustain. Chem. Eng. 2023, 32, 11965–11977. [Google Scholar] [CrossRef]
- Varganici, C.; Rosu, L.; Bifulco, A.; Rosu, D.; Mustata, F.; Gaan, S. Recent advances in flame retardant epoxy systems from reactive DOPO–based phosphorus additives. Polym. Degrad. Stab. 2022, 202, 110020. [Google Scholar] [CrossRef]
- Wang, D.; Xing, W.; Song, L.; Hu, Y. Space-confined growth of defect-rich molybdenum disulfide nanosheets within graphene: Application in the removal of smoke particles and toxic volatiles. ACS Appl. Mater. Interfaces 2016, 8, 34735–34743. [Google Scholar] [CrossRef]
- Wang, D.; Peng, H.; Yu, B.; Zhou, K.; Pan, H.; Zhang, L.; Li, M.; Liu, M.; Tian, A.; Fu, S. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties. Chem. Eng. J. 2020, 389, 124449. [Google Scholar] [CrossRef]
- Li, D.; Müller, M.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef]
Sample | 2θ (°) | FWHM (°) | d-Spacing (nm) |
---|---|---|---|
GO | 11.4 | 2.6 | 0.78 |
RGO-1 | 13.5 | 4.4 | 0.66 |
42.7 | 1.8 | 0.21 | |
RGO-2 | 25.0 | 7.1 | 0.36 |
43.1 | 2.4 | 0.21 | |
fRGO-1 | 8.9 | 3 | 1.00 |
21.6 | 6 | 0.41 | |
43.1 | 2.3 | 0.21 | |
fRGO-2 | 23.8 | 9.8 | 0.37 |
43.3 | 1.9 | 0.21 |
Sample | C (at %) | O (at %) | Si (at %) | P (at %) |
---|---|---|---|---|
fRGO-1 | 68.60 | 26.42 | 3.77 | 1.21 |
fRGO-2 | 78.74 | 16.51 | 3.39 | 1.37 |
Sample | The Temperatures at the Weight Loss of 5 wt% (°C) | The Temperatures at the Weight Loss of 10 wt% (°C) | Char Residues at 800 °C (%) |
---|---|---|---|
PAN | 263 | 319 | 27.9 |
RGO-1/PAN | 221 | 314 | 29.9 |
fRGO-1/PAN | 205 | 267 | 34.3 |
Sample | HRC (J·g−1·K) | PHRR (W·g−1) | THR (KJ·g−1) | Tmax (°C) |
---|---|---|---|---|
PAN | 142 | 129.9 | 18.4 | 345 |
fRGO-1/PAN | 101 | 71.4 | 18.7 | 312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Wang, C.; Fu, S.; Fan, L.; Lin, Q.; Wang, D. Interlayer-Functionalized Graphene with Phosphorus–Silicon-Containing Elements for Improving Thermal Stability and Flame Retardance of Polyacrylonitrile. Processes 2024, 12, 2511. https://doi.org/10.3390/pr12112511
Guan Y, Wang C, Fu S, Fan L, Lin Q, Wang D. Interlayer-Functionalized Graphene with Phosphorus–Silicon-Containing Elements for Improving Thermal Stability and Flame Retardance of Polyacrylonitrile. Processes. 2024; 12(11):2511. https://doi.org/10.3390/pr12112511
Chicago/Turabian StyleGuan, Yu, Chengcheng Wang, Shaohai Fu, Lishan Fan, Qin Lin, and Dong Wang. 2024. "Interlayer-Functionalized Graphene with Phosphorus–Silicon-Containing Elements for Improving Thermal Stability and Flame Retardance of Polyacrylonitrile" Processes 12, no. 11: 2511. https://doi.org/10.3390/pr12112511
APA StyleGuan, Y., Wang, C., Fu, S., Fan, L., Lin, Q., & Wang, D. (2024). Interlayer-Functionalized Graphene with Phosphorus–Silicon-Containing Elements for Improving Thermal Stability and Flame Retardance of Polyacrylonitrile. Processes, 12(11), 2511. https://doi.org/10.3390/pr12112511