Renewable Distillation of Spent Nuclear Fuel
Abstract
:1. Introduction
2. Pyroprocessing Separation Plant
3. Total-Reflux Distillation Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simpson, M.F.; Law, J.D. Nuclear Fuel Reprocessing; Technical Report: INL/EXT-10-17753; Idaho National Laboratory: Idaho Falls, ID, USA, 2010; Volume 3, pp. 154–196.
- Castaño, C.H. Nuclear fuel reprocessing. In Nuclear Energy Encyclopedia: Science, Technology, and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2011; Volume 1, pp. 121–126. [Google Scholar]
- Hérès, X.; Ameil, E.; Martinez, I.; Baron, P.; Hill, C. The separation of extractants implemented in the Diamex-Sanex process. In Proceedings of the Atalante 2008: Nuclear Fuel Cycle for a Sustainable Future, Montpellier, France, 19–22 May 2008; cea-03541270. Available online: https://cea.hal.science/cea-03541270/document (accessed on 18 September 2024).
- Modolo, G.; Geist, A.; Miguirditchian, M. Minor actinide separations in the reprocessing of spent nuclear fuels. In Reprocessing and Recycling of Spent Nuclear Fuel; Woodhead Publishing Series in Energy; Elsevier: Oxford, UK, 2015; pp. 245–287. [Google Scholar] [CrossRef]
- Stoddard, C.K.; Pietz, E. Pilot-Plant Distillation and Purification of Titanium Tetrachloride (Report of Investigations); Bureau of Mines: Pittsburgh, PA, USA, 1947.
- Eckert, J. Niobium and Niobium Compounds. Int. J. Refract. Met. Hard Mater. 1993–1994, 12, 335–340. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Tsubouchi, N. Sugawara, K. Selective Recovery of Rare Earth Elements from Dy containing NdFeB Magnets by Chlorination. ACS Sustain. Chem. Eng. Am. Chem. Soc. 2013, 1, 655–662. [Google Scholar] [CrossRef]
- Reavis, J.G. Experimental Studies of Actinides in Molten Salts; Technical Report: LA10340; Los Alamos National Laboratory: Los Alamos, NM, USA, 1985.
- Geng, J.-X.; Yang, Y.; Fu, H.-Y.; Luo, Y.; Dou, Q.; Li, Q.-N. Process optimization of a closed-chamber distillation system for the recovery of FLiNaK molten salt. Nucl. Sci. Tech. 2021, 32, 3. [Google Scholar] [CrossRef]
- Carter, W.L.; Lindauer, R.B.; McNeese, L.E. Design on an Engineering-Scale, Vacuum Distillation Experiment for Molten-Salt Reactor Fuel; Technical Report: ORNL TM-2213; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1986.
- Eun, H.C.; Yang, H.C.; Cho, Y.J.; Park, H.S.; Kim, E.H.; Kim, I.T. Separation of Pure LiCl-KCl Eutectic Salt from a Mixture of LiCl-KCl Eutectic Salt and Rare-Earth Precipitates by Vacuum Distillation. J. Nucl. Sci. Technol. 2007, 44, 1295–1300. [Google Scholar] [CrossRef]
- Eun, H.C.; Cho, Y.Z.; Lee, T.K.; Kim, I.T.; Park, G.I.; Lee, H.S. An improvement study on the closed chamber distillation system for recovery of renewable salts from salt wastes containing radioactive rare earth compounds. J. Nucl. Sci. Technol. 2013, 295, 345–350. [Google Scholar] [CrossRef]
- Eun, H.C.; Cho, Y.Z.; Park, H.S.; Kim, I.T.; Lee, H.S. Study on a separation method of radionuclides (Ba, Sr) from LiCl salt wastes generated from the electroreduction process of spent nuclear fuel. J. Radioanal. Nucl. Chem. 2011, 292, 531–535. [Google Scholar] [CrossRef]
- Bin Park, S.; Cho, D.W.; Woo, M.S.; Hwang, S.C.; Kang, Y.H.; Kim, J.G.; Lee, H. Investigation of the evaporation of rare earth chlorides in a LiCl–KCl molten salt. J. Radioanal. Nucl. Chem. 2011, 287, 603–608. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, Y.H.; Hwang, S.C.; Shim, J.B.; Ahn, B.G.; Kim, E.H.; Park, S.W. Electrodeposition Characteristics of Uranium in Molten LiCl–KCl Eutectic and its Salt Distillation Behavior. J. Nucl. Sci. Technol. 2006, 43, 263–269. [Google Scholar] [CrossRef]
- Kim, I.S.; Chung, D.Y.; Park, M.S.; Hur, J.M.; Moon, J.K. Evaporation of CsCl, BaCl2, and SrCl2 from the LiCl–Li2O molten salt of the electrolytic reduction process. J. Nucl. Sci. Technol. 2015, 303, 223–227. [Google Scholar] [CrossRef]
- Choi, J.H.; Eun, H.C.; Park, H.S.; Ahn, D.H. A Study on the Separation and Solidification of Group II Nuclides from LiCl Waste Salt Generated from a Pyrochemical Process. J. Nucl. Fuel Cycle Waste Technol. 2015, 13, 77–84. [Google Scholar] [CrossRef]
- Yang, H.C.; Eun, H.C.; Cho, Y.J. Closed Chamber Salt Distillation System for an Enhanced Recovery of Evaporated Pure Salt. J. Nucl. Sci. Technol. 2010, 47, 973–976. [Google Scholar] [CrossRef]
- Souček, P.; Malmbeck, R.; Nourry, C.; Glatz, J.P. Pyrochemical Reprocessing of Spent Fuel by Electrochemical Techniques Using Solid Aluminium Cathodes. Energy Procedia 2011, 7, 396–404. [Google Scholar] [CrossRef]
- Kim, G.Y.; Shin, J.; Kim, S.H.; Ahn, D.H.; Paek, S. Recovery of uranium using electrorefining with an anode-liquid cathode module (ALCM) in molten LiCl–KCl–UCl3–NdCl3 and cadmium distillation. J. Radioanal. Nucl. Chem. 2016, 307, 1551–1557. [Google Scholar] [CrossRef]
- Westphal, B.R.; Krsul, J.R.; Maddison, D.W. Molten Salt Separation from Uranium During the Pyroprocessing of Spent Nuclear Fuel; Technical Report; Argonne National Laboratory: Lemont, IL, USA, 2021.
- Salyulev, A.B.; Shishkin, A.V.; Zaikov, Y.P. Distillation of Lithium Chloride from the Metallization Products of Uranium Dioxid. At. Energy 2019, 126, 226–229. [Google Scholar] [CrossRef]
- Choi, E.Y.; Won, C.Y.; Kang, D.S.; Kim, S.W.; Cha, J.S.; Lee, S.J.; Park, W.; Im, H.S.; Hur, J.M. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation. J. Radioanal. Nucl. Chem. 2015, 304, 535–546. [Google Scholar] [CrossRef]
- Huke, A.; Ruprecht, G.; Weißbach, D.; Gottlieb, S.; Hussein, A.; Czerski, K. The Dual Fluid Reactor—A novel concept for a fast nuclear reactor of high efficiency. Ann. Nucl. Energy 2015, 80, 225–235. [Google Scholar] [CrossRef]
- Sierchuła, J.; Weissbach, D.; Huke, A.; Ruprecht, G.; Czerski, K.; Dabrowski, M.P. Determination of the liquid eutectic metal fuel dual fluid reactor (DFRm) design—Steady state calculations. Int. J. Energy Res. 2019, 43, 3692–3701. [Google Scholar] [CrossRef]
- Böhm, D.; Czerski, K.; Gottlieb, S.; Huke, A.; Ruprecht, G. Recovery of Rare Earth Elements from NdFeB Magnets by Chlorination and Distillation. Processes 2023, 11, 577. [Google Scholar] [CrossRef]
- Böhm, D.; Czerski, K.; Huke, A.; Lewitz, J.-C.; Weißbach, D.; Gottlieb, S.; Ruprecht, G. New Methods for Nuclear Waste Treatment of the Dual Fluid Reactor Concept. Acta Phys. Pol. B 2020, 51, 893–898. [Google Scholar] [CrossRef]
- National Research Council (Contributor). Electrometallurgical Techniques for DOE Spent Fuel Treatment: Final Report; The National Academies Press: Washington, DC, USA, 2000. [CrossRef]
- National Research Council (Contributor). Electrometallurgical Techniques for DOE Spent Fuel Treatment—Status Report on Argonne National Laboratory’s R&D Activity Through Spring; Technical Report: 000087511 (No. DOE/EA-1148-R-053); The National Academies Press: Washington, DC, USA, 1995.
- Herrmann, S.D.; Li, S.X.; Simpson, M.F.; Phongikaroon, S. Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides from Fission Products. Sep. Sci. Technol. 2006, 41, 1965–1983. [Google Scholar] [CrossRef]
- Rumble, J. CRC Handbook of Chemistry and Physics, 99th ed.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781138561632. [Google Scholar]
- Eaton, J.W. GNU Octave and Reproducible Research. J. Process Control. 2010, 22, 1433–1438. [Google Scholar] [CrossRef]
- Kooijman, H.A.; Taylor, R. The ChemSep Book, 2nd ed.; Public Domain Book for the Use of ChemSep Software. 2006. Available online: http://www.chemsep.org/downloads/docs/book2.pdf (accessed on 4 November 2024).
- Schwenk-Ferrero, A. German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues. Sci. Technol. Nucl. Install. 2013, 2013, 293792. [Google Scholar] [CrossRef]
- Koning, A.; Forrest, R.; Kellett, M.; Mills, R.; Henriksson, H.; Rugama, Y. The JEFF-3.1 Nuclear Data Library; JEFF Report 21; OECD/NEA: Paris, France, 2006; ISBN 92-64-02314-3. [Google Scholar]
- Cumulative Fission Yields C3 Table. International Atomic Energy Agency—Nuclear Data Section: Vienna, Austria. 2022. Available online: https://www-nds.iaea.org/sgnucdat/c3.htm (accessed on 16 September 2024).
- Böhm, D. Nuclear Fuel Recycling by Distillation-Based Separation. Ph.D. Thesis, Institute of Physics, University of Szczecin, Szczecin, Poland, 2023. [Google Scholar]
CsCl | SrCl2 | SmCl3 | EuCl3 | NdCl3 | NpCl4 | PuCl3 | AmCl3 | CmCl3 |
---|---|---|---|---|---|---|---|---|
12.563 | 11.571 | 1.147 | 0.911 | 15.564 | 2.378 | 50.034 | 5.579 | 0.253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhm, D.; Czerski, K.; Weißbach, D.; Gottlieb, S.; Huke, A.; Ruprecht, G. Renewable Distillation of Spent Nuclear Fuel. Processes 2024, 12, 2512. https://doi.org/10.3390/pr12112512
Böhm D, Czerski K, Weißbach D, Gottlieb S, Huke A, Ruprecht G. Renewable Distillation of Spent Nuclear Fuel. Processes. 2024; 12(11):2512. https://doi.org/10.3390/pr12112512
Chicago/Turabian StyleBöhm, Dominik, Konrad Czerski, Daniel Weißbach, Stephan Gottlieb, Armin Huke, and Götz Ruprecht. 2024. "Renewable Distillation of Spent Nuclear Fuel" Processes 12, no. 11: 2512. https://doi.org/10.3390/pr12112512
APA StyleBöhm, D., Czerski, K., Weißbach, D., Gottlieb, S., Huke, A., & Ruprecht, G. (2024). Renewable Distillation of Spent Nuclear Fuel. Processes, 12(11), 2512. https://doi.org/10.3390/pr12112512