Experimental Study on the Efficiency of Fracturing Integrated with Flooding by Slickwater in Tight Sandstone Reservoirs
Abstract
:1. Introduction
2. Experimental Methods and Samples
2.1. Experimental Materials
2.2. Single-Phase Percolation Mechanism Experiment
- (1)
- Cores No. 1–6 were dried in a vacuum oven at 120 °C for 3 days.
- (2)
- Porosity and gas permeability were measured using nitrogen porosity and gas permeability tests.
- (3)
- The dry cores were vacuum-saturated with formation water and pre-aged for 1 week.
- (4)
- Saturated cores were placed in a core gripper and injected with formation water at a constant rate of 0.1 mL/min under a 30 MPa confining pressure to measure fluid permeability.
- (5)
- The flow rate of formation water was varied, maintaining the 30 MPa confining pressure, and the stabilized differential pressure at each flow rate was recorded to plot the percolation curves.
- (6)
- Slickwater and guar gum fracturing fluids were injected under the same conditions, and their differential pressures were recorded to generate the respective percolation curves. Since the core structure undergoes irreversible changes after being flooding by fracturing fluids, selected cores were reserved for specific fracturing fluid comparisons. Specifically, Cores No. 1, 2, 5, and 6 were used for slickwater testing, while Cores No. 3 and 6 were designated for guar gum fluid testing.
2.3. Core Damage Experiment
2.4. Interface Tension Measurement
2.5. Core Flooding Experiment
3. Results
3.1. Single-Phase Percolation Mechanism
3.2. Core Damage Caused by Fracturing Fluids
3.3. Interface Tension
3.4. Effect of Core Flooding
4. Discussion
4.1. Core Damage Findings for Field Applications
4.2. Effect of HE-BIO Concentration on Oil Recovery and Field Implications
4.3. Comparison with Conventional Hydraulic Fracturing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, L.; Zou, C.; Jia, A.; Wei, Y.; Zhu, R.; Wu, S.; Guo, Z. Development Characteristics and Orientation of Tight Oil and Gas in China. Pet. Explor. Dev. 2019, 46, 1073–1087. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, S.; Hou, L.; Yang, T.; Li, X.; Guo, B.; Yang, Z. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Pet. Explor. Dev. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, M.; Dong, J.; Yu, T.; Ding, K.; Liu, Y. Assessment of Refracturing Potential of Low Permeability Reservoirs Based on Different Development Approaches. Energies 2024, 17, 2526. [Google Scholar] [CrossRef]
- Zhu, R.; Zou, C.; Mao, Z.; Yang, H.; Hui, X.; Wu, S.; Cui, J.; Su, L.; Li, S.; Yang, Z. Characteristics and Distribution of Continental Tight Oil in China. J. Asian Earth Sci. 2019, 178, 37–51. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Wang, C.; Chen, D. Enhanced Tight Oil Recovery by Volume Fracturing in Chang 7 Reservoir: Experimental Study and Field Practice. Energies 2019, 12, 2419. [Google Scholar] [CrossRef]
- Mardashov, D.; Duryagin, V.; Islamov, S. Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions. Energies 2021, 14, 8254. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, S.; Qu, Z.; Zhou, T.; Xiao, Y.; Gao, J. Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume. Fuel 2014, 128, 373–380. [Google Scholar] [CrossRef]
- Xu, D.; Chen, S.; Chen, J.; Xue, J.; Yang, H. Study on the Imbibition Damage Mechanisms of Fracturing Fluid for the Whole Fracturing Process in a Tight Sandstone Gas Reservoir. Energies 2022, 15, 4463. [Google Scholar] [CrossRef]
- Jie, Y.; Yang, J.; Zhou, D.; Wang, H.; Zou, Y.; Liu, Y.; Zhang, Y. Study on the Optimal Volume Fracturing Design for Horizontal Wells in Tight Oil Reservoirs. Sustainability 2022, 14, 15531. [Google Scholar] [CrossRef]
- Al-Muntasheri, G.A. A Critical Review of Hydraulic-Fracturing Fluids for Moderate- to Ultralow-Permeability Formations Over the Last Decade. SPE Prod. Oper. 2014, 29, 243–260. [Google Scholar] [CrossRef]
- Yao, E.; Bai, H.; Zhou, F.; Zhang, M.; Wang, J.; Li, F. Performance Evaluation of the Multifunctional Variable-Viscosity Slick Water for Fracturing in Unconventional Reservoirs. ACS Omega 2021, 6, 20822–20832. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, F.; Bai, H.; Li, Y.; Yang, H. A Comprehensive Method to Evaluate the Viscous Slickwater as Fracturing Fluids for Hydraulic Fracturing Applications. J. Pet. Sci. Eng. 2020, 193, 107359. [Google Scholar] [CrossRef]
- Brannon, H.D.; Bell, C.E. Eliminating Slickwater Compromises for Improved Shale Stimulation. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011; p. SPE-147485-MS. [Google Scholar] [CrossRef]
- Palisch, T.T.; Vincent, M.C.; Handren, P.J. Slickwater Fracturing: Food for Thought. SPE Prod. Oper. 2010, 25, 327–344. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Kang, Y.; You, L.; She, J.; Wang, K.; Chen, Z. In Situ Sequestration of a Hydraulic Fracturing Fluid in Longmaxi Shale Gas Formation in the Sichuan Basin. Energy Fuels 2019, 33, 6983–6994. [Google Scholar] [CrossRef]
- Li, S.; Cai, B.; He, C.; Gao, Y.; Wang, J.; Yan, F.; Liu, Y.; Yu, T.; Zhong, X.; Cheng, N.; et al. Frac Fluid Induced Damage in Tight Sands and Shale Reservoirs. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, LA, USA, 23–24 February 2022; p. D022S010R003. [Google Scholar] [CrossRef]
- Islamov, S.; Islamov, R.; Shelukhov, G.; Sharifov, A.; Sultanbekov, R.; Ismakov, R.; Agliullin, A.; Ganiev, R. Fluid-Loss Control Technology: From Laboratory to Well Field. Processes 2024, 12, 114. [Google Scholar] [CrossRef]
- Khormali, A. Inhibition of Barium Sulfate Precipitation During Water Injection into Oil Reservoirs Using Various Scale Inhibitors. Arab. J. Sci. Eng. 2023, 48, 9383–9399. [Google Scholar] [CrossRef]
- Yan, J.; Li, Y.; Xie, X.; Slaný, M.; Dong, S.; Wu, Y.; Chen, G. Research of a Novel Fracturing-Production Integral Fluid Based on Cationic Surfactant. J. Mol. Liq. 2023, 369, 120858. [Google Scholar] [CrossRef]
- Cong, S.; Li, J.; Liu, W.; Shi, Y.; Li, Y.; Zheng, K.; Luo, X.; Luo, W. EOR Mechanism of Fracture Oil Displacement Agent for Ultra-Low Permeability Reservoirs. Energy Rep. 2023, 9, 4893–4904. [Google Scholar] [CrossRef]
- Gao, M.-W.; Zhang, M.-S.; Du, H.-Y.; Zhao, M.-W.; Dai, C.-L.; You, Q.; Liu, S.; Jin, Z.-H. A Novel Triple Responsive Smart Fluid for Tight Oil Fracturing-Oil Expulsion Integration. Pet. Sci. 2023, 20, 982–992. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H.; Wu, G.; Xu, M.; Li, C.; Wei, Z.; Cao, W.; Wang, X.; Lv, K.; Liu, D.; et al. Performance Evaluation and Formation Mechanism of Janus-SiO2 Nanoparticles Assisted Viscoelastic Surfactant Fracturing Fluids. J. Mol. Liq. 2023, 390, 123203. [Google Scholar] [CrossRef]
- Gao, H.; Li, X.; Li, T.; Cheng, Z.; Wang, C.; Zhu, X.; Han, B.; Luo, K.; Wang, W.; Ren, X. Characteristics of Oil Production by Fracturing Fluid Additive-Assisted Displacement in Tight Oil Reservoirs. Energy Fuels 2024, 38, 17541–17553. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Fu, Y.; Zhao, M.; Fan, H.; Liu, Y.; Dai, C. Investigation on Interfacial/Surface Properties of Bio-Based Surfactant N-Aliphatic Amide-N,N-Diethoxypropylsulfonate Sodium as an Oil Displacement Agent Regenerated from Waste Cooking Oil. J. Mol. Liq. 2016, 223, 68–74. [Google Scholar] [CrossRef]
- Wang, B.; Wang, S.; Yan, H.; Bai, Y.; She, Y.; Zhang, F. Synthesis and Enhanced Oil Recovery Potential of the Bio-Nano-Oil Displacement System. ACS Omega 2023, 8, 16139–16150. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhou, J.; Li, S.; Chen, X.; Sun, Y.; Zhang, X.; Gao, P.; Zhang, F.; She, Y. Research on Characterization Technology and Field Test of Biological Nano-Oil Displacement in Offshore Medium- and Low-Permeability Reservoirs. ACS Omega 2022, 7, 35087–35100. [Google Scholar] [CrossRef]
- Al-Ghailani, T.; Al-Wahaibi, Y.M.; Joshi, S.J.; Al-Bahry, S.N.; Elshafie, A.E.; Al-Bemani, A.S. Application of a New Bio-ASP for Enhancement of Oil Recovery: Mechanism Study and Core Displacement Test. Fuel 2021, 287, 119432. [Google Scholar] [CrossRef]
- Althalb, H.A.; Elmusrati, I.M.; Banat, I.M. A Novel Approach to Enhance Crude Oil Recovery Ratio Using Selected Bacterial Species. Appl. Sci. 2021, 11, 10492. [Google Scholar] [CrossRef]
- Han, H.; Zhu, W.; Song, Z.; Yue, M. Mechanisms of Oil Displacement by Geobacillus Stearothermophilus Producing Bio-Emulsifier for MEOR. Pet. Sci. Technol. 2017, 35, 1791–1798. [Google Scholar] [CrossRef]
- Wu, B.; Xiu, J.; Yu, L.; Huang, L.; Yi, L.; Ma, Y. Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Sci. Rep. 2022, 12, 7785. [Google Scholar] [CrossRef]
- Zhao, W.; Hou, G. Fracture prediction in the tight-oil reservoirs of the Triassic Yanchang Formation in the Ordos Basin, northern China. Pet. Sci. 2017, 14, 1–23. [Google Scholar] [CrossRef]
- Li, Z.; Qu, X.; Liu, W.; Lei, Q.; Sun, H.; He, Y. Development Modes of Triassic Yanchang Formation Chang 7 Member Tight Oil in Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 241–246. [Google Scholar] [CrossRef]
- He, S.; Huang, T.; Bai, X.; Ren, J.; Meng, K.; Yu, H. Dramatically Enhancing Oil Recovery via High-Efficient Re-Fracturing Horizontal Wells in Ultra-Low Permeability Reservoirs: A Case Study in HQ Oilfield, Ordos Basin, China. Processes 2024, 12, 338. [Google Scholar] [CrossRef]
- Yaich, E.; Williams, S.; Bowser, A.; Goddard, P.; Diaz De Souza, O.C.; Foster, R.A. A Case Study: The Impact of Soaking on Well Performance in the Marcellus. In Proceedings of the 3rd Unconventional Resources Technology Conference, San Antonio, TX, USA, 20–22 July 2015. [Google Scholar] [CrossRef]
- You, L.; Zhang, N.; Kang, Y.; Xu, J.; Cheng, Q.; Zhou, Y. Zero Flowback Rate of Hydraulic Fracturing Fluid in Shale Gas Reservoirs: Concept, Feasibility, and Significance. Energy Fuels 2021, 35, 5671–5682. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, F.; Bai, H.; Wei, D.; Ma, J.; Yang, P.; Zhang, F.; Yuan, L. A New Approach to Study the Friction-Reduction Characteristics of Viscous/Conventional Slickwater in Simulated Pipelines and Fractures. J. Nat. Gas Sci. Eng. 2020, 83, 103620. [Google Scholar] [CrossRef]
- Bai, H.; Zhou, F.; Zhang, M.; Gao, X.; Xu, H.; Yao, E.; Wang, J.; Li, Y. Optimization and Friction Reduction Study of a New Type of Viscoelastic Slickwater System. J. Mol. Liq. 2021, 344, 117876. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, W.; Zhou, D.; Ding, F.; Shu, W.; Zhang, Y.; Ju, Y.; Lei, Z. Research on the Performance of New Weighted Slippery Water Fracturing Fluid System. Open J. Appl. Sci. 2024, 14, 2101–2111. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, W.; Shu, W.; Zhang, Y.; Ju, Y.; Fan, P. Synthesis and performance evaluation of low-damage variable viscosity integrated drag reducer. J. Appl. Polym. Sci. 2024, 141, e55925. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Liu, Y.; Yu, T.; He, C.; Chen, S. Halotolerant Bacillus Velezensis Sustainably Enhanced Oil Recovery of Low Permeability Oil Reservoirs by Producing Biosurfactant and Modulating the Oil Microbiome. Chem. Eng. J. 2023, 453, 139912. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Natural Emulsifiers—Biosurfactants, Phospholipids, Biopolymers, and Colloidal Particles: Molecular and Physicochemical Basis of Functional Performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Zhang, Y.; Zhou, F.; Yao, E.; Wang, R. Study of Fracturing Fluid on Gel Breaking Performance and Damage to Fracture Conductivity. J. Pet. Sci. Eng. 2020, 193, 107443. [Google Scholar] [CrossRef]
- Fan, P.; Liu, Y.; Li, P.; Guo, Y.; Yu, W.; Li, B. Reservoir Sensitivity Analysis of Tight Sandstone and Its Controlling Factors: A Case Study from Chang 4+5 to Chang 6 Reservoirs in N 212 Well Block of Nanniwan Oilfield, Ordos Basin. Geofluids 2023, 2023, 8878837. [Google Scholar] [CrossRef]
- Detournay, E. Slickwater Hydraulic Fracturing of Shales. J. Fluid Mech. 2020, 886, F1. [Google Scholar] [CrossRef]
Core Number | Diameter (cm) | Length (cm) | Porosity (%) | Gas Permeability (mD) | Liquid Permeability (mD) | Average Liquid Permeabllity (mD) |
---|---|---|---|---|---|---|
1 | 2.5 | 6.42 | 8.80 | 0.1489 | 0.0409 | 0.0502 (higher permeabllity) |
2 | 2.5 | 6.41 | 10.07 | 0.2039 | 0.0720 | |
3 | 2.5 | 6.42 | 8.67 | 0.1518 | 0.0378 | |
4 | 2.5 | 6.46 | 6.25 | 0.1156 | 0.0131 | 0.0127 (lower permeabllity) |
5 | 2.5 | 6.46 | 5.94 | 0.1018 | 0.0108 | |
6 | 2.5 | 6.42 | 6.34 | 0.1220 | 0.0143 |
Core Number | Diameter (cm) | Length (cm) | Porosity (%) | Gas Permeability (mD) | Liquid Permeability (mD) | Average Liquid Permeabllity (mD) |
---|---|---|---|---|---|---|
7 | 2.5 | 6.45 | 7.51 | 0.0708 | 0.0060 | 0.0119 |
8 | 2.5. | 6.42 | 7.54 | 0.1011 | 0.0107 | |
9 | 2.5 | 6.44 | 8.77 | 0.1189 | 0.0137 | |
10 | 2.5 | 6.41 | 9.45 | 0.1005 | 0.0106 | |
11 | 2.5 | 6.51 | 9.61 | 0.1540 | 0.0257 | |
12 | 2.5 | 6.42 | 8.17 | 0.0789 | 0.0073 | |
13 | 2.5 | 6.42 | 8.80 | 0.0794 | 0.0073 | |
14 | 2.5 | 6.45 | 9.07 | 0.1005 | 0.0106 | |
15 | 2.5 | 6.42 | 4.71 | 0.0821 | 0.0078 | |
16 | 2.5 | 6.44 | 3.76 | 0.1418 | 0.0193 |
Core Number | Edge Length (cm) | Porosity (%) | Permeability (mD) | Average Permeabllity (mD) |
---|---|---|---|---|
17 | 5 | 11.37 | 0.1650 | 0.1661 |
18 | 5 | 11.04 | 0.1619 | |
19 | 5 | 11.36 | 0.1650 | |
20 | 5 | 11.98 | 0.1723 | |
21 | 5 | 11.52 | 0.1667 | |
22 | 5 | 11.44 | 0.1656 |
Na+ (mg/L) | K+ (mg/L) | Mg2+ (mg/L) | Ca2+(mg/L) | Cl− (mg/L) | CO32− (mg/L) | Salinity (mg/L) |
---|---|---|---|---|---|---|
9018.16 | 87.29 | 70.39 | 4265.33 | 21,698.53 | 134.29 | 35,273.99 |
Viscosity (mPa·s) | Density (g·cm−3) | TAN (mgKOH·g−1) | TBN (mgKOH·g−1) | Volume Fraction of Components | |||
---|---|---|---|---|---|---|---|
Saturated Hydrocarbons | Aromatics | Resin | Asphaltenes | ||||
formation water | 9018.16 | 87.29 | 70.39 | 73.51% | 21.53% | 2.33% | 2.63% |
Core Number | Fracturing Fluid | Initial Permeability (mD) | Permeability After Damage (mD) | Damage Percentage (%) | Average Damage Percentage (%) |
---|---|---|---|---|---|
7 | Slickwater fracturing fluid (0.1%JHFR-2 + 0.2%JHFD-2) | 0.0060 | 0.0037 | 38.33 | 28.80 |
8 | 0.0107 | 0.0073 | 31.78 | ||
9 | 0.0137 | 0.0106 | 24.90 | ||
10 | 0.0106 | 0.0078 | 26.42 | ||
11 | 0.0257 | 0.0193 | 22.63 | ||
12 | Guar gum fracturing fluid | 0.0073 | 0.0035 | 52.05 | 51.49 |
13 | 0.0073 | 0.0036 | 50.68 | ||
14 | 0.0106 | 0.0051 | 51.89 | ||
15 | 0.0078 | 0.0037 | 52.56 | ||
16 | 0.0193 | 0.0093 | 50.26 |
Core Number | First Flooding Fluid | Oil Recovery Rate (%) | Second Flooding Fluid | Oil Recovery Rate (%) |
---|---|---|---|---|
17 | Formation water | 37.63 | Formation water | 39.21 |
18 | Slickwater fracturing fluid (0.1%JHFR-2 + 0.2%JHFD-2) | 41.04 | 0.1%JHFR-2 + 0.2%JHFD-2 + 0.5%HE-BIO | 48.79 |
19 | 41.03 | 0.1%JHFR-2 + 0.2%JHFD-2 + 1.0%HE-BIO | 50.76 | |
20 | 40.99 | 0.1%JHFR-2 + 0.2%JHFD-2 + 1.5%HE-BIO | 52.13 | |
21 | 41.04 | 0.1%JHFR-2 + 0.2%JHFD-2 + 2.0%HE-BIO | 53.21 | |
22 | 41.02 | 0.1%JHFR-2 + 0.2%JHFD-2 + 2.5%HE-BIO | 53.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, P.; Liu, Y.; Lin, Z.; Guo, H.; Li, P. Experimental Study on the Efficiency of Fracturing Integrated with Flooding by Slickwater in Tight Sandstone Reservoirs. Processes 2024, 12, 2529. https://doi.org/10.3390/pr12112529
Fan P, Liu Y, Lin Z, Guo H, Li P. Experimental Study on the Efficiency of Fracturing Integrated with Flooding by Slickwater in Tight Sandstone Reservoirs. Processes. 2024; 12(11):2529. https://doi.org/10.3390/pr12112529
Chicago/Turabian StyleFan, Pingtian, Yuetian Liu, Ziyu Lin, Haojing Guo, and Ping Li. 2024. "Experimental Study on the Efficiency of Fracturing Integrated with Flooding by Slickwater in Tight Sandstone Reservoirs" Processes 12, no. 11: 2529. https://doi.org/10.3390/pr12112529
APA StyleFan, P., Liu, Y., Lin, Z., Guo, H., & Li, P. (2024). Experimental Study on the Efficiency of Fracturing Integrated with Flooding by Slickwater in Tight Sandstone Reservoirs. Processes, 12(11), 2529. https://doi.org/10.3390/pr12112529