Study of the Influence of the Mean Particle Diameter Choice and the Fractions Number on the Quality of Fluidized Bed Numerical Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Particle Mean Diameter
2.3. Numerical Simulation Model
2.4. Fluidized Bed Model
2.5. Terminal Velocity
2.6. Mesh Size
2.7. Time Step
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
CD | drag coefficient |
D | mean particle diameter |
d | particle diameter |
D32 | Sauter mean diameter |
D50 | median mean diameter |
Dmode | mode mean diameter |
es | coefficient of recovery |
distribution density function | |
g | gravitation |
unit tensor | |
Ksg | coefficient of interaction between solid and gas phases |
Kss,j | coefficient of interaction between two solid phases |
granule energy diffusion coefficient | |
NC | Courant number |
pressure | |
ps | pressure of solid phase granules |
Re | Reynolds number |
t | time |
velocity | |
Greek symbols | |
volume fraction of the i-th phase | |
particle collisions energy dissipation | |
solid granule temperature | |
radial distribution coefficient | |
bulk viscosity | |
shear viscosity | |
density | |
stress tensor | |
energy exchange between solid and gas phases | |
energy exchange between two solid phases | |
Subscripts | |
g | gas phase |
s | solid phase |
sg | interaction between solid and gas phases |
ss,j | interaction between two solid phases |
References
- Sadeghbeigi, R. Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units; Butterworth-Heinemann: Oxford, UK, 2020; p. 352. [Google Scholar]
- Bai, P.; Etim, U.J.; Yan, Z.; Mintova, S.; Zhang, Z.; Zhong, Z.; Gao, X. Fluid catalytic cracking technology: Current status and recent discoveries on catalyst contamination. Catal. Rev. 2019, 61, 333–405. [Google Scholar] [CrossRef]
- Basu, P. Combustion and Gasification in Fluidized Beds; CRC Press: Boca Raton, FL, USA, 2006; p. 496. [Google Scholar]
- Özkaya, B.; Kaksonen, A.H.; Sahinkaya, E.; Puhakka, J.A. Fluidized bed bioreactor for multiple environmental engineering solutions. Water Res. 2019, 150, 452–465. [Google Scholar] [CrossRef] [PubMed]
- de Lasa, H. (Ed.) Chemical Reactor Design and Technology: Overview of the New Developments of Energy and Petrochemical Reactor Technologies. Projections for the 90’s; Springer: Berlin/Heidelberg, Germany, 2012; p. 850. [Google Scholar]
- Tu, J.; Yeoh, G.H.; Liu, C.; Tao, Y. Computational Fluid Dynamics: A Practical Approach; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Babanezhad, M.; Behroyan, I.; Nakhjiri, A.T.; Marjani, A.; Shirazian, S. Computational modeling of transport in porous media using an adaptive network-based fuzzy inference system. ACS Omega 2020, 5, 30826–30835. [Google Scholar] [CrossRef]
- Sahranavardfard, N.; Aubagnac-Karkar, D.; Costante, G.; Rahantamialisoa, F.N.; Habchi, C.; Battistoni, M. Computation of Real-Fluid Thermophysical Properties Using a Neural Network Approach Implemented in OpenFOAM. Fluids 2024, 9, 56. [Google Scholar] [CrossRef]
- Loha, C.; Chattopadhyay, H.; Chatterjee, P.K. Euler-Euler CFD modeling of fluidized bed: Influence of specularity coefficient on hydrodynamic behavior. Particuology 2013, 11, 673–680. [Google Scholar] [CrossRef]
- Antunes, G.G.B.; Bück, A.; Mariano, F.P.; Girardi, A.G.; dos Santos, D.A. Particle dynamics in a pseudo-2D spouted bed: Experiments and Euler–Lagrange simulations. Chem. Eng. J. 2024, 491, 152007. [Google Scholar] [CrossRef]
- Tianqi, T.; He, Y.; Ren, A.; Wang, T. Experimental study and DEM numerical simulation of dry/wet particle flow behaviors in a spouted bed. Ind. Eng. Chem. Res. 2019, 58, 15353–15367. [Google Scholar]
- Thornton, C. Granular Dynamics, Contact Mechanics and Particle System Simulations: DEM Study; Springer: Berlin/Heidelberg, Germany, 2015; Volume 24. [Google Scholar]
- Pietsch, S.; Heinrich, S.; Karpinski, K.; Müller, M.; Schönherr, M.; Jäger, F.K. CFD-DEM modeling of a three-dimensional prismatic spouted bed. Powder Technol. 2017, 316, 245–255. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Cai, C.; Lu, D.; Gidaspow, H. Modified MFIX code to simulate hydrodynamics of gas-solids bubbling fluidized beds: A model of coupled kinetic theory of granular flow and discrete element method. Powder Technol. 2019, 357, 417–427. [Google Scholar] [CrossRef]
- Marjani, A.; Nakhjiri, A.T.; Taleghani, A.S.; Shirazian, S. Mass transfer modeling absorption using nanofluids in porous polymeric membranes. J. Mol. Liq. 2020, 318, 114115. [Google Scholar] [CrossRef]
- Elmisaoui, S.; Benjelloun, S.; Boukharfane, R.; Khamar, L.; Elmisaoui, S.; Khamar, M. In Silico CFD Investigation of the Granulation Hydrodynamics in Rotating Drum: Process Sensitivity to the Operating Parameters and Drag Models. Processes 2022, 10, 1939. [Google Scholar] [CrossRef]
- Wu, H.; Yang, C.; Zhang, Z.; Zhang, Q. Simulation of Two-Phase Flow and Syngas Generation in Biomass Gasifier Based on Two-Fluid Model. Energies 2022, 15, 4800. [Google Scholar] [CrossRef]
- Cardoso, J.; Silva, V.; Eusébio, D.; Brito, P.; Tarelho, L. Improved numerical approaches to predict hydrodynamics in a pilot-scale bubbling fluidized bed biomass reactor: A numerical study with experimental validation. Energy Convers. Manag. 2018, 156, 53–67. [Google Scholar] [CrossRef]
- Ding, K.; Xiong, Q.; Zhong, Z.; Zhong, D.; Zhang, Y. CFD simulation of combustible solid waste pyrolysis in a fluidized bed reactor. Powder Technol. 2020, 362, 177–187. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, D.; Duan, L.; Ma, J.; Xiong, J.; Chen, X. Three-dimensional CFD simulation of oxy-fuel combustion in a circulating fluidized bed with warm flue gas recycle. Fuel 2018, 216, 596–611. [Google Scholar] [CrossRef]
- Gao, N.; Zhu, K.; Fang, S.; Deng, L.; Lin, Y.; Huang, Z.; Li, J.; Huang, H. A Numerical Simulation and Experimental Study of Fluidization Characteristics of a Bubbling Fluidized Bed in Biomass Gasification. Energies 2024, 17, 2302. [Google Scholar] [CrossRef]
- Solovev, S.A.; Soloveva, O.V.; Bekmukhamedov, G.E.; Egorova, S.R.; Lamberov, A.A. CFD-simulation of isobutane dehydrogenation for a fluidized bed reactor. ChemEngineering 2022, 6, 98. [Google Scholar] [CrossRef]
- Solov’ev, S.A.; Egorov, A.G.; Lamberov, A.A.; Egorova, S.R.; Kataev, A.N. Effect of the design of a feedstock injection device in a fluidized bed reactor on the efficiency of the reaction, using the dehydrogenation of iso-paraffins in a fluidized chromia-alumina catalyst bed as an example. Catal. Ind. 2016, 8, 48–55. [Google Scholar] [CrossRef]
- Soloveva, O.V.; Solovev, S.A.; Egorova, S.R.; Lamberov, A.A.; Antipin, A.V.; Shamsutdinov, E.V. CFD modeling a fluidized bed large scale reactor with various internal elements near the heated particles feeder. Chem. Eng. Res. Des. 2018, 138, 212–228. [Google Scholar] [CrossRef]
- Kreesaeng, S.; Chalermsinsuwan, B.; Piumsomboon, P. Effect of Inserting Baffles on the Solid Particle Segregation Behavior in Fluidized Bed Reactor: A Computational Study. ChemEngineering 2024, 8, 7. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Z.; Fang, Y.; Wang, H.; Nie, W.; Huang, J.; Wang, Y. Minimum and terminal velocity in fluidization of coal gasification materials and coal blending of gasification under pressure. Fuel 2013, 110, 153–161. [Google Scholar] [CrossRef]
- Doheim, M.A. Particle attrition and heat transfer problems in fluidized processing of ferrous industry with design implications. Powder Technol. 2022, 404, 117512. [Google Scholar] [CrossRef]
- Yates, J.G.; Newton, D. Fine particle effects in a fluidized-bed reactor. Chem. Eng. Sci. 1986, 41, 801–806. [Google Scholar] [CrossRef]
- Kono, H.O.; Ells, T.S.; Chiba, S.; Suzuki, M.; Morimoto, E. Quantitative criteria for emulsion phase characterization and for the transition between particulate and bubbling fluidization. Powder Technol. 1987, 52, 69–76. [Google Scholar] [CrossRef]
- Grace, J.R.; Sun, G. Influence of particle size distribution on the performance of fluidized bed reactors. Can. J. Chem. Eng. 1991, 69, 1126–1134. [Google Scholar] [CrossRef]
- van Ommen, J.R.; Nijenhuis, J.; van den Bleek, C.M.; Coppens, M. Four ways to introduce structure in fluidized bed reactors. Ind. Eng. Chem. Res. 2007, 46, 4236–4244. [Google Scholar] [CrossRef]
- Khoe, G.K.; Ip, T.L.; Grace, J.R. Rheological and fluidization behavior of powders of different particle size distribution. Powder Technol. 1991, 66, 127–141. [Google Scholar] [CrossRef]
- Saayman, J.; Ellis, N.; Nicol, W. Fluidization of high-density particles: The influence of fines on reactor performance. Powder Technol. 2013, 245, 48–55. [Google Scholar] [CrossRef]
- Beetstra, R.; Nijenhuis, J.; Ellis, N.; van Ommen, J.R. The influence of the particle size distribution on fluidized bed hydrodynamics using high throughput experimentation. AIChE J. 2009, 55, 2013–2023. [Google Scholar] [CrossRef]
- Brouwer, G.C.; Wagner, E.C.; van Ommen, J.R.; Mudde, R.F. Effects of pressure and fines content on bubble diameter in a fluidized bed studied using fast X-ray tomography. Chem. Eng. J. 2012, 207–208, 711–717. [Google Scholar] [CrossRef]
- Gu, Y.; Ozel, A.; Sundaresan, S. Numerical studies of the effects of fines on fluidization. AIChE J. 2016, 62, 2271–2281. [Google Scholar] [CrossRef]
- Solovev, S.A.; Antipin, A.V.; Soloveva, O.V.; Khusainov, R.R. Determination of Effective Diameter of Solid Particles for the Eulerian–Eulerian Modelling Approach of Fluidized Bed. J. Phys. Conf. Ser. 2019, 1210, 012133. [Google Scholar] [CrossRef]
- Solovev, S.A.; Yafizov, R.R.; Antipin, A.V. Numerical simulation of the isoparaffins dehydrogenation in a bidisperse fluidized bed. IOP Conf. Ser. Mater. Sci. Eng. 2019, 618, 012095. [Google Scholar] [CrossRef]
- Wang, D.; Fan, L.-S. Particle characterization and behavior relevant to fluidized bed combustion and gasification systems. In Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification; Elsevier: Amsterdam, The Netherlands, 2013; pp. 42–76. [Google Scholar]
- Sung, W.C.; Kim, J.Y.; Chung, S.W.; Lee, D.H. Effect of particle size distribution on hydrodynamics of pneumatic conveying system based on CPFD simulation. Adv. Powder Technol. 2021, 32, 2336–2344. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Li, Y.; Feng, Y.; Duan, C.; Zhou, C.; Dong, L. A model for predicting the segregation directions of binary Geldart B particle mixtures in bubbling fluidized beds. Particuology 2024, 90, 340–349. [Google Scholar] [CrossRef]
- Li, Y.; Hong, K.; Zhou, C.; Zhang, Y.; Dong, L. Resonance-induced particle mixing and segregation phenomena in a forced oscillation fluidized bed. Chem. Eng. Sci. 2024, 299, 120448. [Google Scholar] [CrossRef]
- Solovev, S.A.; Soloveva, O.V.; Antipin, A.V. Investigation of the influence of fine particles on the discrete phase density in the numerical modelling of a fluidized bed. J. Phys. Conf. Ser. 2019, 1158, 042022. [Google Scholar] [CrossRef]
- Soloveva, O.V.; Solovev, S.A.; Shamsutdinov, E.V. The effect of fine particles influence on numerical simulation of bidisperse fluidized bed. IOP Conf. Ser. Earth Environ. Sci. 2019, 337, 012061. [Google Scholar] [CrossRef]
- Bekmukhamedov, G.E.; Mukhamed’yarova, A.N.; Egorova, S.R.; Lamberov, A.A. Modification by SiO2 of Alumina Support for Light Alkane Dehydrogenation Catalysts. Catalysts 2016, 6, 162. [Google Scholar] [CrossRef]
- Bekmukhamedov, G.E.; Morozov, V.I.; Tuktarov, R.R.; Bukharov, M.S.; Egorova, S.R.; Lamberov, A.A.; Yakhvarov, D.G. Electronic interaction between Cr3+ ions in chromia-alumina catalysts for light alkane dehydrogenation. J. Phys. Chem. Solids 2022, 167, 110778. [Google Scholar] [CrossRef]
- Egorova, S.R.; Tuktarov, R.R.; Boretskaya, A.V.; Laskin, A.I.; Gizyatullov, R.N.; Lamberov, A.A. Stabilizing effect of α-Cr2O3 on highly active phases and catalytic performance of a chromium alumina catalyst in the process of isobutane dehydrogenation. Mol. Catal. 2021, 509, 111610. [Google Scholar] [CrossRef]
- Loitsyanskiy, L.G. Mechanics of Liquids and Gases; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Gidaspow, D. Multiphase Flow and Fluidization; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Ding, J.; Gidaspow, D. A bubbling fluidization model using kinetic theory of granular flow. AIChE J. 1990, 36, 523–538. [Google Scholar] [CrossRef]
- Ogawa, S.; Umemura, A.; Oshima, N. On the equation of fully fluidized granular materials. J. Appl. Math. Phys. 1980, 31, 483–493. [Google Scholar] [CrossRef]
- Lun, C.K.K.; Savage, S.B.; Jeffrey, D.J. Kinetic theories for granular flow: Inelastic particles in couette flow and slightlyinelastic particles in a general flow field. J. Fluid Mech. 1984, 140, 223–256. [Google Scholar] [CrossRef]
- Syamlal, M. The Particle-Particle Drag Term in a Multiparticle Model of Fluidization; No. DOE/MC/21353-2373; EG and G Washington Analytical Services Center, Inc.: Morgantown, WV, USA, 1987. [Google Scholar]
- Courant, R.; Kurt, F.; Hans, L. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Gobin, A.; Neau, H.; Simonin, O.; Llinas, J.; Reiling, V.; Selo, J. Numerical simulations of a gas-phase polymerization reactor. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, Wales, UK, 4–7 September 2001. [Google Scholar]
- Cornelissen, J.T.; Taghipour, F.; Escudie, R.; Ellis, N.; Grace, J.R. CFD modelling of a liquid–solid fluidized bed. Chem. Eng. Sci. 2007, 62, 6334–6348. [Google Scholar] [CrossRef]
Air Velocity, m/s | Observed Minimum Height, m | Observed Average Height, m | Observed Maximum Height, m |
---|---|---|---|
0.0716 | 0.107 | 0.1386 | 0.18 |
0.0892 | 0.12 | 0.1433 | 0.19 |
0.1088 | 0.13 | 0.1683 | 0.23 |
0.1213 | 0.13 | 0.1721 | 0.24 |
Fraction Numbers | D32, µm, Group 1 | αs Group 1 | D32, µm, Group 2 | αs Group 2 | D32, µm, Group 3 | αs Group 3 | D32, µm, Group 4 | αs Group 4 | D32, µm, Group 5 | αs Group 5 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 69.8087 | 0.41639 | - | - | - | - | - | - | - | - |
2 | 48.6256 | 0.160518 | 76.4034 | 0.255872 | - | - | - | - | - | - |
3 | 34.0683 | 0.00941 | 59.6621 | 0.316956 | 81.3161 | 0.090024 | - | - | - | - |
4 | 26.3030 | 0.00201 | 48.6609 | 0.158508 | 69.7646 | 0.219063 | 88.0555 | 0.036809 | - | - |
5 | 23.0010 | 0.00083 | 38.7122 | 0.033186 | 55.2646 | 0.214233 | 74.0327 | 0.13133 | 93.0555 | 0.036809 |
Fraction Numbers | αs/α0s Group 1 | αs/α0s Group 2 | αs/α0s Group 3 | αs/α0s Group 4 | αs/α0s Group 5 |
---|---|---|---|---|---|
1 | 1 | - | - | - | - |
2 | 0.3854992 | 0.6145008 | - | - | - |
3 | 0.0225990 | 0.7611998 | 0.2162012 | - | - |
4 | 0.0048272 | 0.3806720 | 0.5261005 | 0.0884003 | - |
5 | 0.0019933 | 0.0796993 | 0.5145008 | 0.3154014 | 0.0884003 |
Air Velocity, m/s | Fine Particle Diameter, µm |
---|---|
0.0716 | 31.2 |
0.0892 | 34.5 |
0.1088 | 37.3 |
0.1213 | 39.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solovev, S.A.; Soloveva, O.V. Study of the Influence of the Mean Particle Diameter Choice and the Fractions Number on the Quality of Fluidized Bed Numerical Simulation. Processes 2024, 12, 2528. https://doi.org/10.3390/pr12112528
Solovev SA, Soloveva OV. Study of the Influence of the Mean Particle Diameter Choice and the Fractions Number on the Quality of Fluidized Bed Numerical Simulation. Processes. 2024; 12(11):2528. https://doi.org/10.3390/pr12112528
Chicago/Turabian StyleSolovev, Sergei A., and Olga V. Soloveva. 2024. "Study of the Influence of the Mean Particle Diameter Choice and the Fractions Number on the Quality of Fluidized Bed Numerical Simulation" Processes 12, no. 11: 2528. https://doi.org/10.3390/pr12112528
APA StyleSolovev, S. A., & Soloveva, O. V. (2024). Study of the Influence of the Mean Particle Diameter Choice and the Fractions Number on the Quality of Fluidized Bed Numerical Simulation. Processes, 12(11), 2528. https://doi.org/10.3390/pr12112528