Numerical Simulation of the Melting of Solid Particles in Thermal Convection with a Modified Immersed Boundary Method
Abstract
:1. Introduction
2. Numerical Model
2.1. Direct-Forcing IB Method for the Flow Fields
2.2. Sharp-Interface IB Method for the Temperature Field
2.3. Melting Model
3. Validation of Our Code
3.1. Sedimentation of a Non-Melting Particle
3.2. Melting of a Fixed Particle Under Mixed Thermal Convections
3.3. Sedimentation of a Melting Particle
4. Applications of the Method
4.1. Melting of a Single Circular Particle in Forced Thermal Convection
4.2. Melting of Particle Pairs
4.3. Melting of an Elliptic Particle
5. Conclusions
- (1)
- The melting time of a circular particle in forced thermal convection can be approximated as .
- (2)
- The melting time of a circular particle in mixed thermal convection first increases and then decreases as Gr increases, as a result of the competition between the forced and natural convections.
- (3)
- The effects of the particle interactions on the melting time are complicated due to the natural convection between two particles. The sufficiently strong natural convection can even render the downstream particle melt faster than the single particle.
- (4)
- For the same particle area, the elliptic particle with the aspect ratio being around 1.4 melts most slowly, as its longer axis is aligned with the cross-stream direction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kranse, A.A.; Schenk, J. Thermal free convection from a solid sphere. Appl. Sci. Res. 1965, 15, 397–403. [Google Scholar] [CrossRef]
- Schenk, J.; Schenkels, F.A.M. Thermal free convection from an ice sphere in water. Appl. Sci. Res. 1968, 19, 465–476. [Google Scholar] [CrossRef]
- Argyropoulos, S.A. An experimental investigation on natural and forced convection in liquid metals. Int. J. Heat Mass Transf. 1996, 39, 547–561. [Google Scholar] [CrossRef]
- Argyropoulos, S.A.; Mikrovas, A.C.; Doutre, D.A. Dimensionless correlations for forced convection in liquid metals: Part I. Single-phase flow. Metall. Mater. Trans. B 2001, 32, 239–246. [Google Scholar] [CrossRef]
- Hao, Y.L.; Tao, Y.X. Melting of a solid sphere under forced and mixed convection: Flow characteristics. J. Heat Transf. 2001, 123, 937–950. [Google Scholar] [CrossRef]
- Hao, Y.L.; Tao, Y.X. Heat transfer characteristics of melting ice spheres under forced and mixed convection. J. Heat Transf. 2002, 124, 891–903. [Google Scholar] [CrossRef]
- Gan, H.; Feng, J.J.; Hu, H.H. Simulation of the sedimentation of melting solid particles. Int. J. Multiph. Flow 2003, 29, 751–769. [Google Scholar] [CrossRef]
- Melissari, B.; Argyropoulos, S.A. Measurement of magnitude and direction of velocity in high-temperature liquid metals. Part I: Mathematical modeling. Metall. Mater. Trans. B 2005, 36, 691–700. [Google Scholar] [CrossRef]
- Melissari, B.; Argyropoulos, S.A. Measurement of magnitude and direction of velocity in high-temperature liquid metals. Part II: Experimental measurements. Metall. Mater. Trans. B 2005, 36, 639–649. [Google Scholar] [CrossRef]
- Kumar, A.; Roy, S. Melting of steel spherical particle in its own liquid: Application to cladding. J. Thermophys. Heat Transf. 2009, 23, 762–772. [Google Scholar] [CrossRef]
- Kumar, A.; Roy, S. Heat transfer characteristics during melting of a metal spherical particle in its own liquid. Int. J. Therm. Sci. 2010, 49, 397–408. [Google Scholar] [CrossRef]
- Hu, H.H.; Patankar, N.A.; Zhu, M.Y. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys. 2001, 169, 427–462. [Google Scholar] [CrossRef]
- Peskin, C.S. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 1972, 10, 252–271. [Google Scholar] [CrossRef]
- Mittal, R.; Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [Google Scholar] [CrossRef]
- Verzicco, R. Immersed boundary methods: Historical perspective and future outlook. Annu. Rev. Fluid Mech. 2023, 55, 129–155. [Google Scholar] [CrossRef]
- Huang, W.X.; Tian, F.B. Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 7617–7636. [Google Scholar] [CrossRef]
- Chen, W.; Zou, S.; Cai, Q.; Yang, Y. An explicit and non-iterative moving-least-squares immersed-boundary method with low boundary velocity error. J. Comput. Phys. 2023, 474, 111803. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H. An immersed boundary-thermal lattice Boltzmann method for solid–liquid phase change. J. Comput. Phys. 2014, 277, 305–319. [Google Scholar] [CrossRef]
- Ahn, J.; Song, J.C.; Lee, J.S. An Immersed Boundary Method for Conjugate Heat Transfer Involving Melting/Solidification. Int. J. Aeronaut. Space Sci. 2023, 24, 1032–1041. [Google Scholar] [CrossRef]
- Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 2005, 209, 448–476. [Google Scholar] [CrossRef]
- Breugem, W.P. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 2012, 231, 4469–4498. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, J.; Luo, K. Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int. J. Multiph. Flow 2008, 34, 283–302. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X. An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J. Comput. Phys. 2011, 230, 3479–3499. [Google Scholar] [CrossRef]
- Yu, Z.; Shao, X. A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 2007, 227, 292–314. [Google Scholar] [CrossRef]
- Shao, X.; Shi, Y.; Yu, Z. Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer. Int. J. Heat Mass Transf. 2012, 55, 6775–6785. [Google Scholar] [CrossRef]
- Liu, X.D.; Fedkiw, R.P.; Kang, M. A boundary Condition Capturing Method for Poisson’s Equation on Irregular Domains. J. Comput. Phys. 2000, 160, 151–178. [Google Scholar] [CrossRef]
- Liu, H.; Krishnan, S.; Marella, S.; Udaykumar, H.S. Sharp interface Cartesian grid method II: A technique for simulating droplet interactions with surfaces of arbitrary shape. J. Comput. Phys. 2005, 210, 32–54. [Google Scholar] [CrossRef]
- Kang, M.; Fedkiw, R.P. A boundary condition capturing method for multiphase incompressible flow. SIAM J. Sci. Comput. 2002, 15, 323–360. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.; Shao, X. Combination of the direct-forcing fictitious domain method and the sharp interface method for the three-dimensional dielectrophoresis of particles. Powder Technol. 2011, 210, 52–59. [Google Scholar] [CrossRef]
- Yu, Z.; Shao, X.; Wachs, A. A fictitious domain method for particulate flows with heat transfer. J. Comput. Phys. 2006, 217, 424–452. [Google Scholar] [CrossRef]
St | Re = 40 | Re = 80 | Re = 120 | Re = 160 | Re = 200 | Pr |
---|---|---|---|---|---|---|
0.01 | 69.9 | 108.5 | 139.2 | 164.5 | 186 | 0.1 |
0.01 | 145.4 | 222.9 | 282.1 | 329.6 | 369.9 | 0.3 |
0.01 | 257.1 | 389.5 | 486.3 | 558.7 | 620.6 | 0.7 |
0.01 | 327.4 | 493.6 | 611 | 694.9 | 766.7 | 1 |
0.02 | 35.1 | 54.5 | 70.2 | 83.2 | 94.4 | 0.1 |
0.02 | 73.1 | 111.9 | 142.1 | 166.3 | 186.7 | 0.3 |
0.02 | 129.1 | 195.7 | 244.2 | 282 | 311.7 | 0.7 |
0.02 | 164.3 | 247.9 | 307.2 | 349 | 385.3 | 1 |
0.1 | 7.2 | 11.4 | 14.7 | 17.5 | 19.9 | 0.1 |
0.1 | 15.2 | 23.3 | 29.6 | 35 | 39.7 | 0.3 |
0.1 | 26.8 | 40.6 | 51 | 59.7 | 66.4 | 0.7 |
0.1 | 34.1 | 51.2 | 63.7 | 73.6 | 81.3 | 1 |
0.5 | 1.41 | 2.5 | 3.4 | 4.1 | 4.7 | 0.1 |
0.5 | 3.5 | 5.5 | 7 | 8.2 | 9.3 | 0.3 |
0.5 | 6.3 | 9.6 | 12 | 14 | 15.7 | 0.7 |
0.5 | 8.1 | 11.9 | 14.8 | 17.3 | 19.3 | 1 |
1 | 0.72 | 1.34 | 1.86 | 2.27 | 2.64 | 0.1 |
1 | 1.89 | 3.1 | 4.03 | 4.77 | 5.41 | 0.3 |
1 | 3.6 | 5.53 | 6.91 | 8.05 | 9.1 | 0.7 |
1 | 4.63 | 6.99 | 8.56 | 9.96 | 11.24 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Shao, X.; Xu, J.; Yu, Z. Numerical Simulation of the Melting of Solid Particles in Thermal Convection with a Modified Immersed Boundary Method. Processes 2024, 12, 2533. https://doi.org/10.3390/pr12112533
Shi Y, Shao X, Xu J, Yu Z. Numerical Simulation of the Melting of Solid Particles in Thermal Convection with a Modified Immersed Boundary Method. Processes. 2024; 12(11):2533. https://doi.org/10.3390/pr12112533
Chicago/Turabian StyleShi, Yang, Xueming Shao, Jian Xu, and Zhaosheng Yu. 2024. "Numerical Simulation of the Melting of Solid Particles in Thermal Convection with a Modified Immersed Boundary Method" Processes 12, no. 11: 2533. https://doi.org/10.3390/pr12112533
APA StyleShi, Y., Shao, X., Xu, J., & Yu, Z. (2024). Numerical Simulation of the Melting of Solid Particles in Thermal Convection with a Modified Immersed Boundary Method. Processes, 12(11), 2533. https://doi.org/10.3390/pr12112533