Insulator-YOLO: Transmission Line Insulator Risk Identification Based on Improved YOLOv5
Abstract
:1. Introduction
- Backbone network optimization to reduce computational complexity: This paper replaces the original CSPDarknet53 structure with GhostNetV2 to minimize redundant computations and improve inference speed. Additionally, the SE module is integrated to enhance inter-channel feature adaptivity, thereby improving the network’s ability to capture important features.
- To boost small-target detection, the CBAM attention mechanism is incorporated into the backbone network. This improves detection in complex backgrounds by enhancing the model’s focus on relevant feature channels and spatial regions, leading to the more precise identification of insulator defects.
- Improved feature fusion network: The BiFPN is utilized to enhance multiscale feature fusion, allowing the model to capture small defects more effectively through top-down and bottom-up fusion paths. This method proves especially beneficial in multiscale detection scenarios.
- To enhance the robustness of small-target detection, a new loss function combining NWD and focal loss is introduced. By improving bounding box regression and classification loss, the model’s accuracy and robustness for small targets are significantly enhanced, especially in imbalanced positive and negative sample situations. This effectively reduces false detections and missed detections.
2. Proposed Method
2.1. Image Preprocessing of Electricity Transmission Line Insulators
2.2. Original YOLOv5 Model
2.3. Insulator-YOLO Model
2.3.1. Optimization of YOLOv5 Backbone Network Based on Ghost-SE Module
2.3.2. CBAM Attention Mechanism
2.3.3. Bidirectional Eigenpyramid Networks
2.3.4. Improved Loss Function
3. Experiments
3.1. Introduction to Data
3.2. Parameterization
3.3. Ablation Experiments
3.4. Comparative Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
YOLOv5 | You only look once version 5 |
GhostNetV2 | GhostNet version 2 |
SE | Squeeze and excitation |
CBAM | Convolutional block attention module |
BiFPN | Bi-directional feature pyramid network |
CIoU | Complete intersection over union |
NWD | Normalized Wasserstein distance |
UAV | Unmanned aerial vehicle |
CV | Computer vision |
mAP | Mean average precision |
CBS | Convolutional block with squeeze and excitation |
SPPF | Spatial pyramid pooling |
FPN | Feature pyramid network |
PAN | Path aggregation network |
NMS | Non-maximum suppression |
CAM | Class activation map |
SAM | Spatial attention module |
PANet | Path aggregation network |
GFLOPs | Giga floating-point operations |
FPS | Frames per second |
C3_X | C3 block with additional convolutional layers |
References
- Wang, J.; Xiong, Z.; Zhang, T.; Ouyang, J. Short-term multiple fault risk assessment for power systems considering unexpected actions of protection system under weather disasters. Int. J. Electr. Power Energy Syst. 2024, 162, 110254. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Mohanta, J.C.; Sanyal, A. Inspection and identification of transmission line insulator breakdown based on deep learning using aerial images. Electr. Power Syst. Res. 2022, 211, 108199. [Google Scholar] [CrossRef]
- Guan, H.; Sun, X.; Su, Y.; Hu, T.; Wang, H.; Wang, H.; Peng, C.; Guo, Q. UAV-lidar aids automatic intelligent powerline inspection. Int. J. Electr. Power Energy Syst. 2021, 130, 106987. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, C.; Wang, D.; Mao, W.; Li, J. A novel image detection method for internal cracks in corn seeds in an industrial inspection line. Comput. Electron. Agric. 2022, 197, 106930. [Google Scholar] [CrossRef]
- Witek, M. Structural integrity of steel pipeline with clusters of corrosion defects. Materials 2021, 14, 852. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.B.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Wu, X.; Duan, J.; Yang, L.; Duan, S. Intelligent cotter pins defect detection for electrified railway based on improved Faster R-CNN and dilated convolution. Comput. Ind. 2024, 162, 104146. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Cheng, D.-J.; Wang, S.; Zhang, H.-B.; Sun, Z.-Y. A novel framework for low-contrast and random multi-scale blade casting defect detection by an adaptive global dynamic detection transformer. Comput. Ind. 2024, 162, 104138. [Google Scholar] [CrossRef]
- Zhou, X.; Ren, Z.; Zhang, Y.; Mi, T.; Zhou, S.; Jiang, Z. A shunted-swin transformer for surface defect detection in roller bearings. Measurement 2024, 238, 115283. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- ultralytics/yolov5: v7.0-YOLOv5 SOTA Realtime Instance Segmentation. Available online: https://github.com/ultralytics/yolov5 (accessed on 10 August 2024).
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Wang, Y.; Huang, J.; Dipu, M.S.K.; Zhao, H.; Gao, S.; Zhang, H.; Lv, P. YOLO-RLC: An advanced target-detection algorithm for surface defects of printed circuit boards based on YOLOv5. Comput. Mater. Contin. 2024, 80, 4973–4995. [Google Scholar] [CrossRef]
- Tao, T.; Dong, D.; Huang, S.; Chen, W. Gap detection of switch machines in complex environment based on object detection and image processing. J. Transp. Eng. Part A Syst. 2020, 146, 04020083. [Google Scholar] [CrossRef]
- Kumar, S.S.; Wang, M.; Abraham, D.M.; Jahanshahi, M.R.; Iseley, T.; Cheng, J.C. Deep learning–based automated detection of sewer defects in CCTV videos. J. Comput. Civ. Eng. 2020, 34, 04019047. [Google Scholar] [CrossRef]
- Lanhang, C. Defect identification of electricity transmission line insulators based on the improved lightweight network model with computer vision assistance. Heliyon 2024, 10, e30405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A review of YOLO algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Yang, W.; Yu, L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv 2023, arXiv:2303.11358. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Li, X.; Yu, Y.; Zhao, Z.; Huang, X.; Zhang, Z.; Zhang, S. DS-YOLOv5s: Lightweight detection algorithm for foreign objects on the surface of power transmission equipment based on multi-scale features. IEEE Access 2022, 10, 108315–108327. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
Serial Number | Labels | Bounding Box |
---|---|---|
005368 | 0 | 0.465278, 0.604745, 0.727431, 0.153935 |
1 | 0.741753, 0.613426, 0.058160, 0.041667 | |
005958 | 0 | 0.424479, 0.684606, 0.607639, 0.408565 |
1 | 0.236545, 0.564815, 0.054688, 0.057870 | |
006586 | 0 | 0.516493, 0.432292, 0.680556, 0.228009 |
1 | 0.753472, 0.358796, 0.059028, 0.057870 | |
fogged_006787 | 0 | 0.293981, 0.527778, 0.425926, 0.602431 |
1 | 0.418981, 0.710069, 0.062500, 0.052083 |
Parameter Name | Parameter Value |
---|---|
Optimizer | SGD |
Initial learning rate | 0.01 |
Momentum | 0.937 |
Weight decay | 0.0005 |
Batch size | 16 |
Training round | 300 |
Loss function | CIoU + focal loss |
Data enhancement | Random crop, zoom, flip |
Actual | Prediction | |
---|---|---|
TP | positive | positive |
TN | negative | negative |
FP | positive | negative |
FN | negative | positive |
Model Configuration | mAP (%) | P (%) | R (%) | F1 (%) |
---|---|---|---|---|
Original YOLOv5 | 78.50 | 76.21 | 80.1 | 78.15 |
GhostNetV2 | 82.83 | 79.24 | 82.31 | 80.69 |
GhostNetV2 + SE | 83.51 | 81.32 | 84.24 | 82.71 |
GhostNetV2 + SE + CBAM | 87.15 | 83.00 | 86.01 | 84.50 |
Insulator-YOLO | 89.65 | 87.92 | 90.11 | 86.02 |
Model | P% | R% | mAP (%) | FPS | Weight (MB) | GFLOPs (G) | Inference Time (ms) |
---|---|---|---|---|---|---|---|
Faster R-CNN | 72.53 | 78.04 | 75.30 | 5.20 | 130.00 | 180.12 | 192.31 |
RetinaNet | 74.23 | 80.51 | 77.84 | 14.93 | 140.00 | 120.21 | 66.85 |
SSD | 73.82 | 79.50 | 76.47 | 59.67 | 87.00 | 56.10 | 16.74 |
EfficientDet | 75.95 | 80.02 | 78.91 | 33.41 | 21.50 | 25.37 | 29.94 |
CenterNet | 77.21 | 80.98 | 79.53 | 30.24 | 43.00 | 33.66 | 33.12 |
YOLOv5 | 84.19 | 88.02 | 86.45 | 60.13 | 38.00 | 20.00 | 16.64 |
YOLOv7 | 85.63 | 88.91 | 87.32 | 66.24 | 50.20 | 25.25 | 15.11 |
YOLOv8 | 86.74 | 89.23 | 88.45 | 72.56 | 52.30 | 27.37 | 13.78 |
YOLOv8-I | 86.00 | 88.50 | 87.75 | 70.00 | 52.50 | 30.00 | 14.29 |
Insulator-YOLO | 87.92 | 90.11 | 89.65 | 61.24 | 38.50 | 24.60 | 16.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Su, J.; Zhao, Y.; Chen, H. Insulator-YOLO: Transmission Line Insulator Risk Identification Based on Improved YOLOv5. Processes 2024, 12, 2552. https://doi.org/10.3390/pr12112552
Zhang N, Su J, Zhao Y, Chen H. Insulator-YOLO: Transmission Line Insulator Risk Identification Based on Improved YOLOv5. Processes. 2024; 12(11):2552. https://doi.org/10.3390/pr12112552
Chicago/Turabian StyleZhang, Nan, Jingyi Su, Yang Zhao, and Hua Chen. 2024. "Insulator-YOLO: Transmission Line Insulator Risk Identification Based on Improved YOLOv5" Processes 12, no. 11: 2552. https://doi.org/10.3390/pr12112552
APA StyleZhang, N., Su, J., Zhao, Y., & Chen, H. (2024). Insulator-YOLO: Transmission Line Insulator Risk Identification Based on Improved YOLOv5. Processes, 12(11), 2552. https://doi.org/10.3390/pr12112552